@article{ASNSP_1997_4_25_1-2_217_0, author = {Brezis, Ha{\"\i}m and Marcus, Moshe}, title = {Hardy's inequalities revisited}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {217--237}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 25}, number = {1-2}, year = {1997}, mrnumber = {1655516}, zbl = {1011.46027}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/} }
TY - JOUR AU - Brezis, Haïm AU - Marcus, Moshe TI - Hardy's inequalities revisited JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 217 EP - 237 VL - 25 IS - 1-2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/ LA - en ID - ASNSP_1997_4_25_1-2_217_0 ER -
%0 Journal Article %A Brezis, Haïm %A Marcus, Moshe %T Hardy's inequalities revisited %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 217-237 %V 25 %N 1-2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/ %G en %F ASNSP_1997_4_25_1-2_217_0
Brezis, Haïm; Marcus, Moshe. Hardy's inequalities revisited. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 1-2, pp. 217-237. http://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/
[1]] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | MR | Zbl
- ,[2] The Hardy constant, Quart. J. Math. Oxford (2) 46 (1995), 417-431. | MR | Zbl
,[3] Note on a Theorem of Hilbert, Math. Zeit. 6 (1920), 314-317. | JFM | MR
,[4] An inequality between integrals, Messenger of Math. 54 (1925), 150-156.
,[5] On the best constant for Hardy's inequality in IRn, to appear in Trans. A.M.S. | Zbl
- - ,[6] The best possible constant in a generalized Hardy's inequality for convex domains in Rn, in "Proc. Conf. on Elliptic and Parabolic P. D. E's and Applications", Capri, 1994, to appear.
- ,[7] Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman, 1990. | MR | Zbl
- , "