We study the generalized boundary value problem for nonnegative solutions of in a bounded Lipschitz domain , when is continuous and nondecreasing. Using the harmonic measure of , we define a trace in the class of outer regular Borel measures. We amphasize the case where , . When is (locally) a cone with vertex , we prove sharp results of removability and characterization of singular behavior. In the general case, assuming that possesses a tangent cone at every boundary point and is subcritical, we prove an existence and uniqueness result for positive solutions with arbitrary boundary trace.
@article{ASNSP_2011_5_10_4_913_0, author = {Marcus, Moshe and Veron, Laurent}, title = {Boundary trace of positive solutions of semilinear elliptic equations in {Lipschitz} domains: the subcritical case}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {913--984}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {4}, year = {2011}, mrnumber = {2932897}, zbl = {1243.35054}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/} }
TY - JOUR AU - Marcus, Moshe AU - Veron, Laurent TI - Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 913 EP - 984 VL - 10 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/ LA - en ID - ASNSP_2011_5_10_4_913_0 ER -
%0 Journal Article %A Marcus, Moshe %A Veron, Laurent %T Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 913-984 %V 10 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/ %G en %F ASNSP_2011_5_10_4_913_0
Marcus, Moshe; Veron, Laurent. Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 4, pp. 913-984. http://www.numdam.org/item/ASNSP_2011_5_10_4_913_0/
[1] P. Baras and M. Pierre, Singularités éliminables pour des équations semi-lineaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185–206. | EuDML | Numdam | MR | Zbl
[2] S. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153–173. | MR | Zbl
[3] K. Bogdan, Sharp estimates for the Green function in Lipschitz domains, J. Math. Anal. Appl. 243 (2000), 326-337. | MR | Zbl
[4] H. Brezis and F. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris (A-B) 287 (1978), A113–A115. | MR | Zbl
[5] B. E. Dalhberg, Estimates on harmonic measures, Arch. Ration. Mech. Anal. 65 (1977), 275–288. | MR | Zbl
[6] E. B. Dynkin, “Diffusions, Superdiffusions and Partial Differential Equations”, Amer. Math. Soc. Colloquium Publications, 50, Providence, RI, 2002. | MR | Zbl
[7] E. B. Dynkin, “Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations”, University Lecture Series, 34, Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
[8] E. B. Dynkin and S. E. Kuznetsov, Solutions of nonlinear differential equations on a Riemanian manifold and their trace on the boundary, Trans. Amer. Math. Soc. 350 (1998), 4217–4552. | MR | Zbl
[9] J. Fabbri and L. Véron, Singular boundary value problems for nonlinear elliptic equations in non smooth domains, Adv. Differential Equations 1 (1996), 1075–1098. | MR | Zbl
[10] N. Gilbarg and N. S. Trudinger, “Partial Differential Equations of Second Order”, 2nd ed., Springer-Verlag, Berlin/New-York, 1983. | MR | Zbl
[11] A. Gmira and L. Véron, Boundary singularities of solutions of nonlinear elliptic equations, Duke Math. J. 64 (1991), 271–324. | MR | Zbl
[12] R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. | MR | Zbl
[13] D. S. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domains, Studies in partial differential equations, MAA Stud. Math. 23, (1982) 1–68. | MR | Zbl
[14] D. S. Jerison and C. E. Kenig, The Dirichlet problems in non-smooth domains, Ann. of Math. 113 (1981), 367–382. | MR | Zbl
[15] C. Kenig and J. Pipher, The -path distribution of conditioned Brownian motion for non-smooth domains, Probab. Theory Related Fields 82 (1989), 615–623. | MR | Zbl
[16] J. B. Keller, On solutions of , Comm. Pure Appl. Math. 10 (1957), 503–510. | MR | Zbl
[17] J. F. Le Gall, The Brownian snake and solutions of in a domain, Probab. Theory Related Fields 102 (1995), 393–432. | MR | Zbl
[18] J. F. Le Gall, “Spatial Branching Processes, Random Snakes and Partial Differential Equations” Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. | MR | Zbl
[19] M. Marcus, Complete classification of the positive solutions of , J. d’Analyse Math., to appear. | MR
[20] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. An. 144 (1998), 201–231. | MR | Zbl
[21] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77 (1998), 481–521. | MR | Zbl
[22] M. Marcus and L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879–900. | MR | Zbl
[23] M. Marcus and L. Véron The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. (6) 56 (2003), 689–731. | MR | Zbl
[24] M. Marcus and L. Véron, The precise boundary trace of positive solutions of the equation in the supercritical case, Perspectives in nonlinear partial differential equations, Contemp. Math., Amer. Math. Soc., Providence, RI 446 (2007), 345–383. | MR | Zbl
[25] M. Marcus and L. Véron, Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains, arXiv:0907.1006 (2009). | Numdam | MR | Zbl
[26] B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Mem. Amer. Math. Soc. 168, 798 (2004). | MR | Zbl
[27] R. Osserman, On the inequality , Pacific J. Math. 7 (1957), 1641–1647. | MR | Zbl
[28] N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure App. Math. 20 (1967), 721–747. | MR | Zbl
[29] L. Véron, “Singularities of Solutions of Second Order Quasilinear Equations”, Pitman Research Notes in Math. 353, Addison-Wesley-Longman, 1996. | MR | Zbl