We consider multidimensional variational integrals for vector-valued functions . Assuming that the integrand satisfies the standard smoothness, convexity and growth assumptions only near we investigate the partial regularity of minimizers (and generalized minimizers) . Introducing the open set we prove that is dense in , but we demonstrate for by an example that may have positive measure. In contrast, for one has .
Additionally, we establish analogous results for weak solutions of quasilinear elliptic systems.
@article{ASNSP_2009_5_8_3_469_0, author = {Scheven, Christoph and Schmidt, Thomas}, title = {Asymptotically regular problems {II:} {Partial} {Lipschitz} continuity and a singular set of positive measure}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {469--507}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {3}, year = {2009}, mrnumber = {2581424}, zbl = {1197.49043}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/} }
TY - JOUR AU - Scheven, Christoph AU - Schmidt, Thomas TI - Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 469 EP - 507 VL - 8 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/ LA - en ID - ASNSP_2009_5_8_3_469_0 ER -
%0 Journal Article %A Scheven, Christoph %A Schmidt, Thomas %T Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 469-507 %V 8 %N 3 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/ %G en %F ASNSP_2009_5_8_3_469_0
Scheven, Christoph; Schmidt, Thomas. Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 469-507. http://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/
[1] A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal. 99 (1987), 261–281. | MR | Zbl
and ,[2] Convex functionals and partial regularity, Arch. Ration. Mech. Anal. 102 (1988), 243–272. | MR | Zbl
and ,[3] Hölder continuity of the solutions of some nonlinear elliptic systems, Adv. Math. 48 (1983), 15–43. | MR | Zbl
,[4] Linearization at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh, Sect. A 102 (1986), 291–303. | MR | Zbl
and ,[5] Partial regularity for almost minimizers of quasi-convex integrals, SIAM J. Math. Anal. 32 (2000), 665–687. | MR | Zbl
, and ,[6] Optimal interior partial regularity for nonlinear elliptic systems: The method of -harmonic approximation, Manuscripta Math. 103 (2000), 267–298. | MR | Zbl
and ,[7] Regularity of -minimizers of quasi-convex variational integrals with polynomial growth, Differential Geom. Appl. 17 (2002), 139–152. | MR | Zbl
and ,[8] Quasiconvexity and partial regularity in the calculus of variations, Arch. Ration. Mech. Anal. 95 (1986), 227–252. | MR | Zbl
,[9] Scalar minimizers with fractal singular sets, Arch. Ration. Mech. Anal. 172 (2004), 295–307. | MR | Zbl
, and ,[10] Global regularity for almost minimizers of nonconvex variational problems, Ann. Mat. Pura Appl. (4) 187 (2008), 263–321. | MR | Zbl
,[11] Partial continuity for elliptic problems, Ann. Inst. H. Poincaré, Anal. Non Linéaire 25 (2008), 471–503. | EuDML | Numdam | MR | Zbl
and ,[12] Global Morrey regularity results for asymptotically convex variational problems, Forum Math. 20 (2008), 921–953. | MR | Zbl
, and ,[13] Global Lipschitz regularity for almost minimizers of asymptotically convex variational problems, to appear in Ann. Mat. Pura Appl. (4). | MR | Zbl
, and ,[14] Lipschitz regularity for certain problems from relaxation, Asymptot. Anal. 12 (1996), 145–151. | MR | Zbl
,[15] Global gradient bounds for relaxed variational problems, Manuscripta Math. 92 (1997), 287–302. | EuDML | MR | Zbl
and ,[16] partial regularity of functions minimising quasiconvex integrals, Manuscripta Math. 54 (1986), 121–143. | EuDML | MR | Zbl
and ,[17] “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems”, Princeton University Press, Princeton, 1983. | MR | Zbl
,[18] “An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs”, Edizioni della Normale, Pisa, 2005. | MR | Zbl
and ,[19] Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire 3 (1986), 185–208. | EuDML | Numdam | MR | Zbl
and ,[20] Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math. 57 (1986), 55–99. | EuDML | MR | Zbl
and ,[21] Differentiability of minima of non-differentiable functionals, Invent. Math. 72 (1983), 285–298. | EuDML | MR | Zbl
and ,[22] Precisazione delle funzioni di e singolarità delle soluzioni deboli di sistemi ellitici non lineari, Boll. Unione Mat. Ital. (4) 2 (1969), 71–76. | MR | Zbl
,[23] “Direct Methods in the Calculus of Variations”, World Scientific Publishing Co., New York, 2003. | MR | Zbl
,[24] Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Ration. Mech. Anal. 31 (1968), 173–184. | MR | Zbl
and ,[25] A new partial regularity proof for solutions of nonlinear elliptic systems, Manuscripta Math. 95 (1998), 11–31. | EuDML | MR | Zbl
,[26] An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 23 (1996), 57–67. | EuDML | Numdam | MR | Zbl
, and ,[27] The singular set of minima of integral functionals, Arch. Ration. Mech. Anal. 180 (2006), 331–398. | MR | Zbl
and ,[28] The singular set of Lipschitzian minima of multiple integrals Arch. Ration. Mech. Anal. 184 (2007), 341–369. | MR | Zbl
and ,[29] Lipschitz continuity of local minimizers of a nonconvex functional, Appl. Anal. 28 (1988), 223–230. | MR | Zbl
and ,[30] Regularity for minima of functionals with p-growth, J. Differential Equations 76 (1988), 203–212. | MR | Zbl
,[31] The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal. 166 (2003), 287–301. | MR | Zbl
,[32] Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1968), 649–670. | MR | Zbl
,[33] Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, Theor. Nonlin. Oper., Constr. Aspects, Proc. int. Summer Sch., Berlin 1975 (1977), 197–206.
,[34] Lipschitz regularity of solutions of some asymptotically convex problems, Proc. Roy. Soc. Edinburgh, Sect. A 117 (1991), 59–73. | MR | Zbl
,[35] “Convex Analysis”, Princeton University Press, Princeton, 1970. | MR
,[36] Asymptotically regular problems I: Higher integrability, submitted. | MR | Zbl
and ,[37] “Convex Bodies: The Brunn-Minkowski Theory”, Cambridge University Press, Cambridge, 1993. | MR | Zbl
,[38] A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations 10 (2000), 213–221. | MR | Zbl
and ,[39] Non-Lipschitz minimizers of smooth uniformly convex functionals, Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276. | MR | Zbl
and ,[40] “Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators”, Springer, New York, 1990. | MR
,