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Asymptotically regular problems II:
Partial Lipschitz continuity and a singular set of positive measure

CHRISTOPH SCHEVEN AND THOMAS SCHMIDT

Abstract. We consider multidimensional variational integrals for vector-valued
functions u : Rn ⊃ � → RN . Assuming that the integrand satisfies the standard
smoothness, convexity and growth assumptions only near ∞ we investigate the
partial regularity of minimizers (and generalized minimizers) u. Introducing the
open set

R(u) := {x ∈ � : u is Lipschitz near x},
we prove that R(u) is dense in �, but we demonstrate for n ≥ 3 by an example
that � \ R(u) may have positive measure. In contrast, for n = 2 one has R(u) =
�.

Additionally, we establish analogous results for weak solutions of quasilin-
ear elliptic systems.

Mathematics Subject Classification (2000): 49N60 (primary); 35B65, 35H99
(secondary).

1. Introduction

Throughout this paper we fix n ≥ 2, N ≥ 1, p ≥ 2 and a nonempty bounded open
subset � of Rn . We study the minimization problem for variational integrals

F[u] :=
∫

�

f (Du) dx for u : � → RN , (1.1)

where f : RNn → R is a given integrand of the argument z ∈ RNn .
We say that f is regular iff it satisfies a set of standard smoothness, convexity

and growth assumptions (see Definition 2.1 below). If f is a regular C∞-integrand,
then there is a well-developed existence and regularity theory for the minimization
problem: Precisely, minimizers u of F exist in the Sobolev space W 1,p(�,RN )

and are C∞ outside a negligible set S; see [1, 2, 5–8, 11, 16, 19, 21, 24, 25, 27, 32].
The smallest such S is called the singular set and need — by famous examples
[26, 33, 38, 39] — not be empty, except for n = 2 [27, 32] or N = 1 [20, 21, 30].
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Here, we restrict our considerations to proving local Lipschitz continuity of
minimizers u of F . In this regard it is heuristically plausible that only the behavior
of f for large values of the gradient variable z should be relevant. Indeed, it was
pointed out by Chipot & Evans [4] that this heuristic idea can be made precise
in some particular situations. Moreover, various related results (see for instance
[10, 13–15, 20, 29, 34]) have by now been established and we refer the reader to the
first part [36] of this work for an extensive discussion of such issues and further
references. However, we stress that all these papers are concerned with particular
situations where — for some reason — everywhere regularity is available.

In the present paper we focus on the general case, where only partial regularity
can be expected. In fact, without imposing any additional structure condition we
will merely require that f is locally bounded and asymptotically regular, i.e. regular
for large values of z (see Definition 2.2 for a precise statement). Introducing the
open set

R(u) := {x ∈ � : u is Lipschitz near x}, (1.2)

it would then be natural to expect that S(u) := � \ R(u) is negligible. However,
we demonstrate that the situation is not that simple: We prove that the regular set
R(u) is always dense in �, but give for n ≥ 3 and N = 1

2 n(n+1)−1 an example
of a minimizer u such that the singular set S(u) has positive measure. Additionally,
we obtain R(u) = � in the cases n = 2 and N = 1.

2. Statements

In order to state our results, we will now specify our assumptions on the integrand
in (1.1), introducing the classes of regular and asymptotically regular integrands.
We stress that our notion of an asymptotically regular integrand in the present paper
differs from the one in [36], and is in fact considerably stronger; see [12, 36] and
Section 4 for further information about notions of asymptotic regularity and their
relation.

Definition 2.1 (Regularity). Let m ∈ N. We say that f : Rm → R is regular iff
it is C2 and satisfies the following convexity and growth conditions:

D2 f (z)(ξ, ξ) ≥ γ (1 + |z|)p−2|ξ |2,
|D2 f (z)| ≤ �(1 + |z|)p−2

for all z, ξ ∈ Rm , and for some positive constants γ and �.

Definition 2.2 (Asymptotic regularity). We say that f : Rm → R is asymptot-
ically regular iff for some positive constants M , γ and � the function f is C2

outside BM and satisfies, for all z, ξ ∈ Rm with |z| > M , the conditions

D2 f (z)(ξ, ξ) ≥ γ |z|p−2|ξ |2,
|D2 f (z)| ≤ �|z|p−2.
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In the following, we will additionally assume that f is locally bounded, i.e.
there is some nondecreasing function ϒ : [0, ∞) → [0, ∞) with

| f (z)| ≤ ϒ(|z|) for all z ∈ RNn.

With this terminology we may now state our first main result:

Theorem 2.3 (Partial Lipschitz regularity for minimizers).We consider a locally
bounded Borel integrand f : RNn → R and assume that f is asymptotically
regular. Then there exists a constant L, depending only on the data n, N , p, γ , �,
ϒ and M, such that for every minimizer u ∈ W 1,p(�,RN ) of F from (1.1), the
domain � can be decomposed into three disjoint sets H, BL and � such that

• H is an open set with u ∈ C1,α
loc (H,RN ) for every α ∈ (0, 1);

• every x ∈ BL is a Lebesgue point of Du with |Du(x)| ≤ L;
• � is a negligible set.

In particular, H and the interior of BL are contained in the regular set R(u), defined
in (1.2), and thus R(u) is dense in �.

Remark 2.4. The above result does not imply that the singular set S(u) is negligi-
ble. In fact, it may happen that S(u) ∩ ∂ BL has positive measure. We will give an
example of a minimizer with this behavior below; see Theorem 2.6.

The reader should note that asymptotic regularity in combination with the re-
quirement that f is locally bounded implies

c|z|p − C ≤ f (z) ≤ C(1 + |z|p) for all z ∈ RNn, (2.1)

which, in turn, ensures that the integral (1.1) is well-defined and finite on
W 1,p(�,RN ).

We stress that, in contrast to regularity, asymptotic regularity does not allow
to prove the existence of minimizers. Thus, it is desirable to find an appropriate
class of generalized minimizers and to extend the above regularity result to this
class. Here, we deal with relaxed minimizers in the sense of [36, Section 2.1.5] and
establish the following generalization of Theorem 2.3:

Theorem 2.5 (Partial Lipschitz regularity for relaxed minimizers). The conclu-
sion of Theorem 2.3 still holds if u is only a relaxed minimizer of F (instead of being
a minimizer).

The question arises if the above assertion that R(u) is dense — or equivalently
that S(u) is nowhere dense — can be improved. As mentioned above, in the case
of regular integrands the singular set is negligible, and in fact even its Hausdorff
dimension can be bounded away from n [22, 27, 31]. However, our next result
shows that such assertions do not carry over to asymptotically regular problems:
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Theorem 2.6 (A singular set of positive measure). For every n ≥ 3 and N =
1
2 n(n + 1) − 1, there exist a smooth integrand f : RNn → R and a function
u ∈ W 1,2(�,RN ) such that the following holds:

• f is asymptotically regular in the sense of Definition 2.2 with p = 2;
• u is a minimizer of F from (1.1);
• S(u) has positive measure.

Next, we consider quasilinear elliptic systems

div a(Du) = 0 on �. (2.2)

In the following, we will employ notions of regularity and asymptotic regularity for
the structure function a : RNn → RNn analogous to the Definitions 2.1 and 2.2. In
particular, we say that a is asymptotically regular iff there are positive constants
M , γ and � such that a is C1 outside BM and satisfies

Da(z)ξ · ξ ≥ γ |z|p−2|ξ |2,
|Da(z)| ≤ �|z|p−2

for |z| > M and ξ ∈ RNn . With these notations we state our main result for
systems:

Theorem 2.7 (Partial Lipschitz regularity for weak solutions). We consider a lo-
cally bounded Borel function a : RNn → RNn and we assume that a is asymptot-
ically regular. Then the conclusion of Theorem 2.3 holds for every weak solution
u ∈ W 1,p(�,RN ) of (2.2).

In the situation of Theorem 2.7, the singular set S(u) will, in general, not be
negligible either. Indeed, this assertion is an immediate consequence of Theorem
2.6 since u solves div D f (Du) = 0.

Additionally, in the cases n = 2 and N = 1 we can improve the above results
obtaining everywhere regularity (compare [15]):

Theorem 2.8 (Two-dimensional problems). Let n = 2. We suppose that u is ei-
ther a relaxed minimizer of F from (1.1) under the assumptions of Theorem 2.3
or a weak solution of (2.2) under the assumptions of Theorem 2.7. Then we have
R(u) = �.

We stress that Theorem 2.8, apart from its intrinsic interest, has some appli-
cations in the theory of quasiconvex integrals; see the discussion in [28, Section
6.1]

Before stating the result for N = 1, let us specify an additional technical
assumption, which we will need for p > 2, but not for p = 2. For the function
A := D2 f or A := Da, respectively, we require the following uniform continuity
condition:

|A(z2) − A(z1)| ≤ (|z1| + |z2|)p−2ν
(|z2 − z1|2

)
(2.3)

for all z1, z2 ∈ Rn with |z1| > M and |z2| > M and for some modulus of continuity
ν (i.e. a continuous function ν : [0, ∞) → [0, ∞) with ν(0) = 0).
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Theorem 2.9 (Scalar problems). Let N = 1. We suppose that u is either a relaxed
minimizer of F from (1.1) under the assumptions of Theorem 2.3 or a weak solution
of (2.2) under the assumptions of Theorem 2.7. Additionally, in the case p > 2 we
assume that (2.3) holds. Then we have R(u) = �.

Finally, let us briefly outline the plan of the paper and the proofs. Having col-
lected some preliminaries in Section 3, we devote the next sections to the proofs
of the regularity theorems Theorem 2.3 and Theorem 2.7. We start taking a closer
look at the notion of asymptotic regularity in Section 4. In fact, we prove that f is
asymptotically regular if and only if it coincides with a regular integrand for large
values of z. This gives us a regular comparison problem. In Section 5 we consider a
solution v of this regular problem and establish certain comparison estimates show-
ing that u−v is, in some sense, small. The derivation of these estimates is inspired
by ideas in [4,14,20]. In Section 6 we then carry over some partial regularity from v

to u, thus completing the proofs of Theorem 2.3 and Theorem 2.7. Additionally, we
derive Theorem 2.5, as a consequence of Theorem 2.3 and Section 4. In Section 7,
following essentially the same strategy we establish Theorem 2.8 and Theorem 2.9.

Section 8 is devoted to irregularity, specifically to the counterexample in
Theorem 2.6. Our starting point here is a recent interesting example of Sverak &
Yan [39]. They constructed a minimizer of a regular integral which is not Lipschitz
at an isolated singularity. The basic idea of our example is now to construct u by
placing rescaled copies of their minimizer on certain balls, with the singularities in
the centers. In fact, using a Cantor type construction we may arrange the balls in
such a way that the closure of the set of their centers has positive measure. Then
we complete the proof of Theorem 2.6 by observing that S(u) coincides with this
set and defining an integral which is minimized by u. Here, in order to see that u
is actually a minimizer — and not merely a solution of some system — we need to
revisit some of the more technical details of [39].

3. Preliminaries

Notation

Constants. We use the notations c and C for positive constants, possibly varying
from line to line. The dependences of such constants will only occasionally be
highlighted. Anyway, we widely follow the convention that large constants will be
denoted by capital letters, and small constants by lowercase letters.

Closure and boundary. We write A for the closure and ∂ A for the boundary of a
set A.

Balls. By Br (x) we denote the open ball in Rn with center x ∈ Rn and radius
r > 0. Here, the center will be omitted if it is 0. Similarly, we write Br (x) and Br
for closed balls.
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Mean values. We use the common notations f A and −
∫

A f dx for the mean value
1

|A|
∫

A f dx of f on A, where |A| is the Lebesgue measure of A. In particular, in
the case of balls we abbreviate fx,r := fBr (x) and fr := f0,r .

Function spaces. As usual we write L p, W k,p and Ck,α for Lebesgue, Sobolev
and Hölder spaces, respectively. In addition we write L p

loc, W k,p
loc and Ck,α

loc for the
localized variants of these spaces.

The (nondegenerate) p-energy. We set

ep(z) := 1

p
(1 + |z|2) p

2 . (3.1)

The functions ψ and V . For z ∈ RNn we let

ψ(z) := |z|2 + |z|p and V (z) := (1 + |z|2) p−2
4 z. (3.2)

Some inequalities

In the following we state some inequalities for z0, z, ξ ∈ RNn , where all the con-
stants depend only on p. First, computing

D2ep(z)(ξ, ξ) = (1 + |z|2) p−2
2 |ξ |2 + (p − 2)(1 + |z|2) p−4

2 (z · ξ)2

we find the following estimates for the p-energy

2
2−p

2 (1 + |z|)p−2|ξ |2 ≤ D2ep(z)(ξ, ξ) ≤ (p − 1)(1 + |z|)p−2|ξ |2. (3.3)

In addition, we recall the standard inequality (see for instance [19, Lemma 2.1])∫ 1

0
(1 + |z0 + s(z − z0)|)p−2 ds ≥ c(1 + |z0| + |z|)p−2. (3.4)

By change of variables we deduce the following variant:∫ 1

1
2

(1 + |z0 + s(z − z0)|)p−2 ds ≥ c(1 + |z|)p−2.

Furthermore, employing the last two inequalities we derive∫ 1

0

∫ 1

0
(1 + |z0 + t (z − z0) + st (ξ − z)|)p−2 ds t dt

≥ c
∫ 1

0
(1 + |z0 + t (z − z0)| + |z0 + t (ξ − z0)|)p−2t dt

≥ c

[ ∫ 1

1
2

(1 + |z0 + t (z − z0)|)p−2 dt +
∫ 1

1
2

(1 + |z0 + t (ξ − z0)|)p−2 dt

]
≥ c

[
(1 + |z|)p−2 + (1 + |ξ |)p−2] ≥ c(1 + |z| + |ξ |)p−2.

(3.5)
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Finally, we record the following inequalities for the function V from (3.2) (see [19,
Lemma 2.2]):

c(1+|z0|+|z|)p−2|z−z0|2 ≤ |V (z)−V (z0)|2 ≤ C(1+|z0|+|z|)p−2|z−z0|2. (3.6)

In particular, we have

|z − z0|2 + |z − z0|p = ψ(z − z0) ≤ C |V (z) − V (z0)|2. (3.7)

4. Asymptotic regularity

In this section we prove that asymptotic regularity of an integrand f is in fact equiv-
alent with the existence of a regular g such that f (z) equals g(z) for large values of
z; see Corollary 4.3. This characterization of asymptotic regularity will be crucial
in the following sections since it enables us to work with a suitable regular compar-
ison problem. We also establish analogous results for structure functions a in the
case of systems; see Corollary 4.6.

Starting with a technical lemma we initially treat the case of integrands.

Lemma 4.1. We consider a function f : Rm → R that is bounded from below.
Moreover, we assume that there are positive constants γ and M such that f is C2

outside BM with

D2 f (z)(ξ, ξ) ≥ γ |z|p−2|ξ |2 for |z| > M and ξ ∈ Rm .

Then, there is a positive constant M̃ such that

f (z) = C f (z) holds for |z| > M̃,

where C f denotes the convex hull of f .

Proof. We assume f ≥ 0 on Rm and recall the definition of the convex hull

C f (z) := sup{h(z) : h is convex with h ≤ f on Rm}. (4.1)

Clearly, we have C f (z) ≤ f (z). To prove the opposite inequality, we fix a large
constant M̃ with 1

2γ (M + 1)p−2(M̃ − M − 1)2 ≥ sup|ζ |=M+1 f (ζ ). We claim that
for |z| > M̃ the affine function h(ξ) = f (z) + D f (z)(ξ − z) is admissible in the
definition of C f (z). To see this we fix a point ξ ∈ Rm . If the line from ξ to z does
not intersect BM we clearly have f (z) + D f (z)(ξ − z) ≤ f (ξ) since f is convex
along this line. If the line intersects BM , we denote by ξ∗ the closest point to z in the

intersection of the line with BM+1. Recalling |z| > M̃ ≥ M + 1 and |ξ∗| = M + 1
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we have

f (z) + D f (z)(ξ∗ − z)

= f (ξ∗) −
∫ 1

0
[D f (z + t (ξ∗ − z)) − D f (z)] dt (ξ∗ − z)

= f (ξ∗) −
∫ 1

0

∫ 1

0
D2 f (z + st (ξ∗ − z)) ds t dt (ξ∗ − z, ξ∗ − z)

≤ f (ξ∗) − γ

∫ 1

0

∫ 1

0
|stξ∗ + (1 − st)z|p−2 ds t dt |ξ∗ − z|2

≤ f (ξ∗) − 1

2
γ (M + 1)p−2|ξ∗ − z|2.

Keeping in mind |z| > M̃ , |ξ∗| = M + 1 and the choice of M̃ , we deduce

f (z) + D f (z)(ξ∗ − z) ≤ 0. (4.2)

In particular, (4.2) implies D f (z)(ξ∗ − z) ≤ 0 and noting ξ − ξ∗ = r(ξ∗ − z) for
some r > 0 we get D f (z)(ξ − ξ∗) ≤ 0. Combining this with (4.2) we finally arrive
at h(ξ) = f (z) + D f (z)(ξ − z) ≤ f (ξ) in any case. Thus, h is admissible as

claimed and C f (z) ≥ f (z) for |z| > M̃ .

Theorem 4.2. For a function f : Rm → R the following statements are equiva-
lent:

(i) There are positive constants γ and M and a map g ∈ C2(Rm) such that

f (z) = g(z) for |z| > M

and

D2g(z)(ξ, ξ) ≥ γ (1 + |z|)p−2|ξ |2 for all z, ξ ∈ Rm .

(ii) f is C2 outside a large ball and there are a positive constant γ and a map
g ∈ C2(Rm) such that

lim|z|→∞
|D2 f (z) − D2g(z)|

|z|p−2
= 0

and

D2g(z)(ξ, ξ) ≥ γ (1 + |z|)p−2|ξ |2 for all z, ξ ∈ Rm .

(iii) There are positive constants γ and M such that f is C2 outside BM and

D2 f (z)(ξ, ξ) ≥ γ |z|p−2|ξ |2 holds for |z| > M and all ξ ∈ Rm .
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Proof. Clearly, (i) implies (ii) and (ii) implies (iii).
Now we assume that f satisfies (iii) with constants γ and M . Clearly, we may

take M ≥ 1. It is not difficult to show that f is bounded from below on Rm \ BM+1.
Since the above properties depend only on the values of f outside large balls, we
may assume that f is bounded from below on Rm . Letting

f̃ (z) := f (z) − 21−p

p−1
γ ep(z)

and recalling (3.1) and (3.3) we have for |z| > M ≥ 1

D2 f̃ (z)(ξ, ξ) ≥ γ |z|p−2|ξ |2 − 21−pγ (1 + |z|)p−2|ξ |2 ≥ 1

2
γ |z|p−2|ξ |2.

Thus, for
f ∗ := C f̃ ,

Lemma 4.1 implies the existence of a constant M̃ > M with f ∗(z) = f̃ (z) for
|z| > M̃ . In particular, f ∗ is C2 outside BM̃ and we have

D2 f ∗(z)(ξ, ξ) = D2 f̃ (z)(ξ, ξ) ≥ 1

2
γ |z|p−2|ξ |2 for |z| > M̃ . (4.3)

Mollifying f ∗ with smoothing radius 0 < ε < 1 we obtain a C2-function f ∗
ε on

Rm . One checks that f ∗
ε is again convex and satisfies

D2 f ∗
ε (z)(ξ, ξ) ≥ 1

2
γ |z|p−2|ξ |2 for |z| ≥ M̃ + 1 > 2. (4.4)

We choose a cut-off function ϕ ∈ C∞(R, [0, 1]) with ϕ ≡ 1 on [0, M̃ + 1], ϕ ≡ 0
on [M̃ + 2, ∞) and ‖ϕ‖C2 ≤ 8. Furthermore, we define a C2-function

g̃(z) := ϕ(|z|) f ∗
ε (z) + (1 − ϕ(|z|)) f ∗(z).

Then, we clearly have D2g̃(z)(ξ, ξ) ≥ 0 for |z| < M̃ + 1 and for |z| > M̃ + 2.

Moreover, we compute for M̃ + 1 ≤ |z| ≤ M̃ + 2

D2g̃(z)(ξ, ξ) ≥ ϕ(|z|)D2 f ∗
ε (z)(ξ, ξ) + (1 − ϕ(|z|))D2 f ∗(z)(ξ, ξ)

− C‖ f ∗
ε − f ∗‖C1(BM̃+2\BM̃+1)

|ξ |2

≥
(

c − C‖ f ∗
ε − f ∗‖C1(BM̃+2\BM̃+1)

)
|ξ |2

by (4.3) and (4.4), where c and C are positive constants depending only on n, N ,
p, γ and M̃ . Choosing ε > 0 small enough, the last expression is positive and we
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conclude that g̃ is convex on Rm with g̃(z) = f̃ (z) for |z| > M̃ + 2. Finally, we
define

g(z) := g̃(z) + 21−p

p−1
γ ep(z),

and deduce from (3.3) that g has the properties from (i) with constants 2
4−3p

2

p−1 γ and

M̃+2.

As a special case of the preceding theorem we obtain the following characteri-
zation of asymptotic regularity:

Corollary 4.3. A function f : Rm → R is asymptotically regular if and only if
there exist a constant M > 0 and a regular g : Rm → R such that f (z) = g(z)
holds for |z| > M.

We also record a slight refinement of Corollary 4.3, which will be convenient
later:

Lemma 4.4. Let f : Rm → R be locally bounded and asymptotically regular.
Then there exist a constant M > 0 and a regular g : Rm → R such that we have
f (z) = g(z) for |z| > M and additionally f (z) ≤ g(z) for all z ∈ Rm.

Proof. By Corollary 4.3 there are a constant M∗ and a regular g∗ (say with con-
stants γ and �) such that f (z) = g∗(z) for |z| > M∗. Next, let L := supBM∗ ( f −
g∗). If L ≤ 0 holds we are done. If L is positive we consider a smooth and com-
pactly supported cut-off function h : Rm → R with h ≡ L on BM∗ and |D2h| ≤ γ

2
on Rm . Then g := g∗ + h has the claimed properties.

Next, using a quite different construction, we deal with the case of systems.

Theorem 4.5. For a : Rm → Rm with

lim sup
|z|→∞

|a(z)|
|z|p−1

< ∞ (4.5)

the following statements are equivalent:

(i) There are positive constants γ and M and a map b ∈ C1(Rm,Rm) such that

a(z) = b(z) for |z| > M

and

Db(z)ξ · ξ ≥ γ (1 + |z|)p−2|ξ |2 for all z, ξ ∈ Rm .
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(ii) The function a is C1 outside a large ball and there are a positive constant γ

and a map b ∈ C1(Rm,Rm) such that

lim|z|→∞
|Da(z) − Db(z)|

|z|p−2
= 0

and

Db(z)ξ · ξ ≥ γ (1 + |z|)p−2|ξ |2 for all z, ξ ∈ Rm .

(iii) There are positive constants γ and M such that a is C1 outside BM and

Da(z)ξ · ξ ≥ γ |z|p−2|ξ |2 holds for |z| > M and all ξ ∈ Rm .

Proof. Clearly, (i) implies (ii) and (ii) implies (iii). Now we assume that a satisfies
(iii) with constants γ and M . In view of (4.5) — enlarging M if necessary — we
may assume

sup
|ζ |≥M

|a(ζ )|
|ζ |p−1

< ∞.

For ε > 0 to be chosen later we consider a cut-off function ϕ̃ ∈ C∞(R, [0, 1]) with
ϕ̃ ≡ 1 on (−∞, log(M)], ϕ̃ ≡ 0 on [log(M)+1/ε, ∞) and |ϕ̃′| ≤ 2ε on R. Setting
ϕ(t) := ϕ̃(log(t)) for t > 0 and ϕ(0) := 1 we have constructed a smooth function
ϕ : [0, ∞) → [0, 1] with the following properties:

ϕ ≡ 1 on [0, M],
ϕ ≡ 0 on [M exp(1/ε), ∞),

ϕ′(t) ≤ 2ε

t
for all t > 0.

We define
b(z) := ϕ(|z|)Dep(z) + (1 − ϕ(|z|))a(z),

where ep is defined in (3.1). The function b is in C1(Rm,Rm) and (3.3) gives

Db(z)ξ · ξ ≥ 2
2−p

2 (1 + |z|)p−2|ξ |2

for |z| < M . In addition, for |z| ≥ M we have

Db(z)ξ · ξ = ϕ(|z|)D2ep(z)(ξ, ξ) + (1 − ϕ(|z|))Da(z)ξ · ξ

+ ϕ′(|z|)(1 + |z|2) p−2
2

(z · ξ)2

|z| − ϕ′(|z|) (z · ξ)(a(z) · ξ)

|z|

≥ c(1 + |z|)p−2|ξ |2 − Cε(1 + |z|)p−2

[
1 + sup

|ζ |≥M

|a(ζ )|
|ζ |p−1

]
|ξ |2
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with positive constants c, C depending only on p, γ and M . Choosing ε small
enough we end up with

Db(z)ξ · ξ ≥ c(1 + |z|)p−2|ξ |2

for all z, ξ ∈ Rm . Thus, (i) holds.

Noting that asymptotic regularity of a implies (4.5) we deduce the following
characterization:

Corollary 4.6. A function a : RNn → RNn is asymptotically regular if and only if
there exist a constant M > 0 and a regular b : RNn → RNn such that a(z) = b(z)
holds for |z| > M.

5. Comparison estimates

In this section we prove that solutions of the asymptotically regular problems (1.1)
and (2.2) can be approximated, close to infinity, by solutions of the regular compar-
ison problems (5.4) and (5.8). For the proofs we modify techniques of [14, 20].

We start with an auxiliary result.

Lemma 5.1. Let u ∈ W 1,p(�,RN ) and let M > 0. Then there is a constant
KM > M, depending only on M and p, such that for K ≥ KM , the estimate

−
∫

�

|Du|p dx > K p

implies

|{y ∈ � : |Du(y)| ≤ M}| ≤ 2p

K

∫
�

|Du − (Du)�|p dx .

Proof. At first, observe that the assumption and Minkowski’s inequality yield

K <

(
−
∫

�

|Du|p dx

)1/p

≤
(

−
∫

�

|Du − (Du)�|p dx

)1/p

+ |(Du)�|. (5.1)

Now we choose KM > M large enough so that K ≥ KM implies K −1(K −M)p ≥ 1.
From this and (5.1) we conclude for every y ∈ � with |Du(y)| ≤ M

1 ≤ 1

K

[
K − |Du(y)|]p

≤ 1

K

[(
−
∫

�

|Du − (Du)�|p dx

)1/p

+ |(Du)�| − |Du(y)|
]p

≤ 2p−1

K

[
−
∫

�

|Du − (Du)�|p dx + |Du(y) − (Du)�|p
]

.
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Integrating this inequality over the set {y ∈ � : |Du(y)| ≤ M}, we infer the desired
result

|{y ∈ � : |Du(y)| ≤ M}| ≤ 2p

K

∫
�

|Du − (Du)�|p dx .

In view of Lemma 4.4 we impose the following hypotheses:
Assumption 5.2. f : RNn → R is a locally bounded Borel integrand and g :
RNn → R is regular. Moreover, we have f (z) = g(z) whenever |z| is larger than
some constant M , and there holds f ≤ g on RNn .

To fix notations let us record that these assumptions imply, in particular,

D2g(z)(ξ, ξ) ≥ γ (1 + |z|)p−2|ξ |2, (5.2)

|D2g(z)| ≤ �(1 + |z|)p−2,

0 ≤ g(z) − f (z) ≤ �1 (5.3)

for all z, ξ ∈ RNn with positive constants γ , � and �1.
In this setting we may now introduce, for some ball BR(x0) ⊂ �, the regular

comparison problem

G[v] :=
∫

BR(x0)

g(Dv) dx . (5.4)

After these preparations we will now derive the comparison estimates for the case
of integrals.

Lemma 5.3. Let f and g be as in Assumption 5.2. Then for any ε > 0 there is a
K (ε) > M with the following property: For every minimizer u ∈W 1,p(�,RN ) of F
from (1.1), every ball BR(x0)⊂� and every minimizer v∈u + W 1,p

0 (BR(x0),RN )

of G from (5.4), there holds either

−
∫

BR(x0)

|Du|p dx ≤ K p(ε)

or

−
∫

BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx ≤ ε−
∫

BR(x0)

|Du − (Du)x0,R|p dx .

Here, the constant K (ε) depends only on the data p, γ , �1, M and on ε.

Proof. In this proof, we use the notation {|Du| ≤ M} for the set {y ∈ BR(x0) :
|Du(y)| ≤ M}. Setting w := 1

2 (u + v) we use the minimizing properties of u and
v together with the hypotheses from Assumption 5.2 to derive∫

BR(x0)

g(Dv) + g(Du) − 2g(Dw) dx ≤
∫

BR(x0)

g(Du) − g(Dw) dx

≤
∫

BR(x0)

g(Du) − f (Dw) dx

≤
∫

{|Du|≤M}
g(Du) − f (Du) dx .
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The left-hand side can be estimated by the inequalities (5.2) and (3.5):

g(Dv) + g(Du) − 2g(Dw)

= 1

2

∫ 1

0

[
Dg(Dw + t (Dv−Dw)) − Dg(Dw + t (Du−Dw))

]
dt (Dv−Du)

= 1

2

∫ 1

0

∫ 1

0
D2g(Dw+t (Du−Dw)+st (Dv−Du)) ds t dt (Dv−Du, Dv−Du)

≥ γ

2

∫ 1

0

∫ 1

0
(1 + |Dw + t (Du−Dw) + st (Dv−Du)|)p−2 ds t dt |Du−Dv|2

≥ cγ (1 + |Du| + |Dv|)p−2|Du − Dv|2

for some positive constant c, depending only on p. Combining the last two esti-
mates and recalling (5.3), we arrive at

cγ
∫

BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx ≤ �1|{|Du| ≤ M}|.

Now by Lemma 5.1, for any K ≥ KM the condition

−
∫

BR(x0)

|Du|p dx > K p

implies∫
BR(x0)

(1+ |Du|+|Dv|)p−2|Du−Dv|2 dx ≤ 2p�1

cγ K

∫
BR(x0)

|Du−(Du)x0,R|p dx .

We have thus proven the lemma if we let K (ε) := max
{ 2p�1

cγ ε
, KM

}
.

Next, keeping Corollary 4.6 in mind, we proceed similarly in the case of sys-
tems.

Assumption 5.4. a : RNn → RNn is a locally bounded Borel function and b :
RNn → RNn is regular. Moreover, we have a(z) = b(z) whenever |z| is larger than
some constant M . In particular, these assumptions imply

Db(z)ξ · ξ ≥ γ (1 + |z|)p−2|ξ |2, (5.5)

|Db(z)| ≤ �(1 + |z|)p−2, (5.6)

|b(z) − a(z)| ≤ �1 (5.7)

for all z, ξ ∈ RNn with positive constants γ , � and �1.

Here, introducing the regular system

div b(Dv) = 0 on BR(x0), (5.8)

the comparison estimate reads:
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Lemma 5.5. Let a and b be as in Assumption 5.4. Then for any ε > 0 there
exists a constant K (ε) > M with the following property: For every weak solution
u ∈ W 1,p(�,RN ) of (2.2), every ball BR(x0) ⊂ � and every weak solution v ∈
u + W 1,p

0 (BR(x0),RN ) of (5.8), there holds either

−
∫

BR(x0)

|Du|p dx ≤ K p(ε)

or

−
∫

BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx ≤ ε−
∫

BR(x0)

|Du − (Du)x0,R|p dx .

Here, the constant K (ε) depends only on the data p, γ, �1, M and on ε.

Proof. At first, using (5.5) and (3.4) we derive the pointwise estimate

b(Du) · (Du − Dv) − b(Dv) · (Du − Dv)

=
∫ 1

0
Db(Dv + t (Du − Dv)) dt (Du − Dv, Du − Dv)

≥ γ

∫ 1

0
(1 + |Dv + t (Du − Dv)|)p−2 dt |Du − Dv|2

≥ cγ (1 + |Du| + |Dv|)p−2|Du − Dv|2.
Since we have u − v ∈ W 1,p

0 (BR(x0),RN ), this function is an admissible test
function in the weak formulation of (5.8) and (2.2). Therefore, integrating the above
inequality yields

cγ
∫

BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx

≤
∫

BR(x0)

b(Du) · (Du − Dv) dx

=
∫

BR(x0)

(b(Du) − a(Du)) · (Du − Dv) dx

≤ �1

∫
{|Du|≤M}

|Du − Dv| dx .

Here, we used the bound (5.7) in the last step. Applying the Hölder inequality we
arrive at∫

BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx

≤ �1

cγ
|{|Du| ≤ M}|1− 1

p

(∫
BR(x0)

|Du − Dv|p dx

) 1
p

≤ �1

cγ
|{|Du| ≤ M}|1− 1

p

(∫
BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx

) 1
p

.
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The last estimate implies∫
BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx ≤
(

�1

cγ

) p
p−1 |{|Du| ≤ M}|. (5.9)

Now if we assume that for some K ≥ KM there holds

−
∫

BR(x0)

|Du|p dx > K p

then the estimate (5.9) implies by Lemma 5.1∫
BR(x0)

(1 + |Du| + |Dv|)p−2|Du − Dv|2 dx

≤
(

�1

cγ

) p
p−1 2p

K

∫
BR(x0)

|Du − (Du)x0,R|p dx .

Thus, choosing K (ε) := max
{(

�1
cγ

) p
p−1 2p

ε
, KM

}
we have established the claim of

the lemma.

6. Partial regularity

6.1. Regular problems

We start with introducing the excess

�v(y, r) := −
∫

Br (y)

ψ
(
Dv − (Dv)y,r

)
dx (6.1)

where ψ is defined in (3.2), and recall the following ε-regularity result for regular
problems.

Theorem 6.1. Let a regular structure function b ∈ C1(RNn,RNn) be given, that is
the properties (5.5) and (5.6) are satisfied. Then there is a constant C0, depending
only on n, N and �

γ
, such that the following holds. For all T > 0 and τ ∈ (0, 1)

there exists a positive constant κ0, depending on n, N , p, T, τ and b, such that for
any ball BR(x0) ⊂ Rn and every weak solution v ∈ W 1,p(BR(x0),RN ) of the
regular system (5.8), the conditions

�v(x0, R) ≤ κ2
0 and |(Dv)x0,R| ≤ T

imply
�v(x0, τ R) ≤ C0τ

2�v(x0, R).
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The theorem follows from techniques in [25], where a more general case was con-
sidered; compare with [5, 6, 8] and [23, Chapter 9] for the case of integrals. Since
the dependences of the constants as stated in the theorem are crucial for our proofs,
we repeat the relevant arguments from [25] for the convenience of the reader.

Sketch of proof. We claim that the theorem holds with the constant C0 := C1 + 1,
where C1 = C1(n, N , �

γ
) > 0 is the corresponding constant for linear systems with

constant coefficients, determined by (6.9). Assume that the theorem does not hold
with C0, some parameters τ ∈ (0, 1), T > 0 and a structure function b. Then
there exist sequences of radii rm > 0, of centers xm ∈ Rn and of weak solutions
vm ∈ W 1,p(Brm (xm),RN ) of

div b(Dvm) = 0

with

λ2
m := �vm (xm, rm) −→

m→∞ 0 and |(Dvm)xm ,rm | ≤ T for all m ∈ N, (6.2)

but
�vm (xm, τrm) > C0τ

2λ2
m for all m ∈ N. (6.3)

We rescale the solutions vm as follows. With

v̄m := (vm)xm ,rm and Pm := (Dvm)xm ,rm ,

we let

wm(x) := vm(xm + rm x) − v̄m − rm Pm x

rmλm

for all m ∈ N and x ∈ B1. The definition implies in particular

Dwm(x) = Dvm(xm + rm x) − Pm

λm
,

(wm)0,1 = 0 and (Dwm)0,1 = 0.

Thus, the conditions (6.2) and (6.3) become

−
∫

B1

(|Dwm |2 + λ
p−2
m |Dwm |p) dx = 1, but (6.4)

−
∫

Bτ

(|Dwm − (Dwm)0,τ |2 + λ
p−2
m |Dwm − (Dwm)0,τ |p) dx > C0τ

2. (6.5)

From (6.4) we infer, possibly after extracting a subsequence, that there is a limit
map w ∈ W 1,2(B1, RN ) with wm ⇀ w weakly in W 1,2(B1,RN ) and wm → w

strongly in L2(B1,RN ) as m → ∞. Furthermore, since supm |Pm | ≤ T , we may
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assume Pm → P0 as m → ∞ for some P0 ∈ RNn . As in [25, Section 4], one can
show furthermore

Dwm → Dw strongly in L2
loc(B1,RN ) and (6.6)

λ
(p−2)/p
m Dwm → 0 strongly in L p

loc(B1,RN ) in the case p > 2. (6.7)

Moreover, the reasoning of [25, Section 3] implies

div (Db(P0)Dw) ≡ 0 on B1. (6.8)

Here, the hypotheses on b imply the following properties of the constant structure
function Db(P0).

|Db(P0)| ≤ �(1 + |P0|)p−2 and

Db(P0)ξ · ξ ≥ γ (1 + |P0|)p−2 for all ξ ∈ RNn.

This implies that the dispersion ratio of the linear system (6.8) is bounded by �
γ

. We
can thus apply linear theory (compare [17, Theorem III.2.1 and Remarks III.2.2,
III.2.3]) with the result

−
∫

Bτ

|Dw − (Dw)0,τ |2 dx ≤ C1τ
2−
∫

B1

|Dw − (Dw)0,1|2 dx < C0τ
2 (6.9)

for a constant C1 depending only on n, N and the dispersion ratio of Db(P0), that
is on �

γ
. The fact that C1 does not depend on |P0| can alternatively be checked by

a scaling argument. By the strong convergence (6.6) and (6.7), the decay estimate
(6.9) clearly contradicts the assumption (6.5). This completes the proof.

Remark 6.2. In particular, taking into account the Euler equation, the conclusion
of Theorem 6.1 holds for minimizers v of regular integrals.

6.2. Asymptotically regular problems

This subsection is devoted to the proofs of Theorem 2.3 and Theorem 2.7. Through-
out this section, we suppose that the Assumptions 5.2 and 5.4 are satisfied.

Theorem 6.3. There is a constant L = L(n, N , p, γ, �, �1, M) such that the fol-
lowing holds. Let u ∈ W 1,p(�,RN ) be either a minimizer of the functional F from
(1.1) or a weak solution of (2.2). Then, in every Lebesgue point x0 ∈ � of Du with

lim inf
r↘0

−
∫

Br (x0)

|Du − (Du)x0,r |p dx = 0, (6.10)

there holds either |Du(x0)| ≤ L, or there is a neighborhood U of x0 with u ∈
C1,α(U,RN ) for every α ∈ (0, 1).
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Remark 6.4. We point out that the size of the neighborhood U and the C1,α-norm
of u may not be controlled by the data.

The proof is based on the following decay estimate near infinity for the excess
�u defined in (6.1).

Lemma 6.5. For every α ∈ (0, 1) there are constants τ ∈ (0, 1), and K0, and for
every T > 0 there is a constant κT ∈ (0, 1), such that the following holds. Every
minimizer u ∈ W 1,p(�,RN ) of F and every solution u ∈ W 1,p(�,RN ) of (2.2)
with

�u(x0, R) ≤ κ2
T and K0 < −

∫
BR(x0)

|Du| dx ≤ T

for some ball BR(x0) ⊂ � satisfies

�u(x0, τ R) ≤ τ 2α�u(x0, R).

Here, the dependences are given by τ(n, N , p, �
γ
, α), K0(n, N , p, γ, �, �1, M, α)

and κT (T, n, N , p, �
γ
, α, b respectively g).

Proof. For a given α ∈ (0, 1), we fix constants τ ∈ (0, 1) and ε ∈ (0, 1
2 ) small

enough to ensure

16pC0τ
2 ≤ τ 2α and 4pε ≤ 1

2
τ n+2α, (6.11)

with the constant C0 = C0
(
n, N , �

γ

)
from Theorem 6.1. Accordingly, the above

choices depend only on n, N , p, �
γ

and α. With these choices of ε and τ and a
given constant T > 0, we claim that Lemma 6.5 holds with K0 := K (ε) and
κT := 4−p/2κ0, where the constants K (ε) and κ0 are given by Lemma 5.3, Lemma
5.5 and Theorem 6.1, respectively.

In the case of minimizers, we employ the direct method to choose the com-
parison map v ∈ W 1,p(BR(x0),RN ) as the minimizer of the regular functional G
from (5.4) in the Dirichlet class u + W 1,p

0 (BR(x0),RN ). Similarly, in the case of

systems, we choose a solution v ∈ u + W 1,p
0 (BR(x0),RN ) of the regular system

(5.8). Since b is regular, such a solution can be constructed by Galerkin’s method;
see e.g. [40, Chapter 26]. Note that by assumption,(

−
∫

BR(x0)

∣∣Du|p dx

)1/p

≥ −
∫

BR(x0)

|Du| dx > K0.

By the choice of K0, we may thus apply Lemma 5.3 and Lemma 5.5, respectively,
deducing

−
∫

BR(x0)

ψ(Du − Dv) dx ≤ 2ε−
∫

BR(x0)

ψ
(
Du − (Du)x0,R

)
dx . (6.12)
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Combining this with the assumptions on u, we infer

�v(x0, R) = −
∫

BR(x0)

ψ
(
Dv − (Dv)x0,R

)
dx

≤ 2p−
∫

BR(x0)

ψ(Dv − (Du)x0,R) dx

≤ 22p−1−
∫

BR(x0)

ψ
(
Du − (Du)x0,R

)
dx + 22p−1−

∫
BR(x0)

ψ(Du − Dv) dx

≤ 22p−1(1 + 2ε) −
∫

BR(x0)

ψ
(
Du − (Du)x0,R

)
dx

≤ 4p �u(x0, R) ≤ 4pκ2
T ≤ κ2

0

(6.13)

by the choice of κT . Keeping in mind that

−
∫

BR(x0)

|Du| dx ≤ T,

Theorem 6.1 and Remark 6.2 yield the following excess estimate for the comparison
map v.

−
∫

Bτ R(x0)

ψ
(
Dv − (Dv)x0,τ R

)
dx ≤ C0τ

2−
∫

BR(x0)

ψ
(
Dv − (Dv)x0,R

)
dx

for the value of τ chosen above and a constant C0 = C0
(
n, N , �

γ

)
. This implies

�u(x0, τ R)

≤ 2p−
∫

Bτ R(x0)

ψ
(
Du − (Dv)x0,τ R

)
dx

≤ 22p−1−
∫

Bτ R(x0)

ψ
(
Dv − (Dv)x0,τ R

)
dx + 22p−1−

∫
Bτ R(x0)

ψ(Du − Dv) dx

≤ 22p−1C0τ
2−
∫

BR(x0)

ψ
(
Dv − (Dv)x0,R

)
dx + 22p−1τ−n−

∫
BR(x0)

ψ(Du − Dv) dx

≤ (
24p−1C0τ

2 + 22pετ−n)�u(x0, R)

≤ τ 2α�u(x0, R),

where we first employed (6.13) and (6.12), and then the choice of τ and ε according
to (6.11).

Proof of Theorem 6.3. We may fix an arbitrary α ∈ (0, 1), for simplicity we let
α := 1

2 . This choice determines the constants K0 and τ from the preceding lemma.
Next we let L := K0 +2, which depends only on n, N , p, γ, �, �1 and M , and fix a
Lebesgue point x0 ∈ � with (6.10). For the value T := |Du(x0)|+3, we choose the
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constant κT according to the preceding lemma and let ε0 := 1
2τ n(1−√

τ)κT < 1
2κT .

We start by choosing a good radius. In the first step, we let

R1 := inf

{
r ∈ (0, dist(x0, ∂�)) :

∣∣∣∣−∫
Br (x0)

Du dx

∣∣∣∣ ≤ K0 + 2

}
,

which is to be interpreted as R1 := dist(x0, ∂�) if the above set is empty. If R1 = 0,
we deduce |Du(x0)| ≤ K0 + 2 = L , since x0 is a Lebesgue point. Thus, in this
case the first alternative of the theorem holds. Now we consider the remaining case
R1 > 0. We choose R0 ∈ (0, R1] small enough that

−
∫

BR0 (x0)

ψ
(
Du − (Du)x0,R0

)
dx < ε2

0 and −
∫

BR0 (x0)

|Du| dx ≤ T − 2.

Note that by the choice of R1 and 0 < R0 ≤ R1, we have furthermore

−
∫

BR0 (x0)

|Du| dx ≥ |(Du)x0,R0 | ≥ K0 + 2.

By the absolute continuity of the integral, we can choose a neighborhood U of x0
in such a way that for all y ∈ U ,

�u(y, R0) = −
∫

BR0 (y)

ψ
(
Du − (Du)y,R0

)
dx ≤ 4ε2

0 < κ2
T and

K0 + 1 ≤ |(Du)y,R0 | ≤ −
∫

BR0 (y)

|Du| dx ≤ T − 1.

Thus, we are in the situation of Lemma 6.5, which yields with the value of τ ∈ (0, 1)

fixed above and α = 1
2

�u(y, τ R0) ≤ τ �u(y, R0) ≤ 4ε2
0 < κ2

T .

Furthermore we estimate∣∣∣∣∣−
∫

Bτ R0 (y)

Du dx

∣∣∣∣∣ ≥ |(Du)y,R0 | − −
∫

Bτ R0 (y)

|Du − (Du)y,R0 | dx

≥ K0 + 1 − τ−n

(
−
∫

BR0 (y)

ψ
(
Du − (Du)y,R0

)
dx

)1/2

≥ K0 + 1 − 2ε0

τ n
≥ K0 + 1 − κT > K0,

where we used the Cauchy-Schwarz inequality in the second estimate. Similarly,
we estimate the mean value from above.

−
∫

Bτ R0 (y)

|Du| dx ≤ |(Du)y,R0 | + −
∫

Bτ R0 (y)

|Du − (Du)y,R0 | dx

≤ T − 1 + 2ε0

τ n
≤ T − 1 + κT ≤ T .
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Consequently, we can apply Lemma 6.5 again on the ball Bτ R0(y). In this manner,
we establish successively the following estimates on the balls with radii rk := τ k R0.

−
∫

Brk (y)

ψ
(
Du − (Du)y,rk

)
dx ≤ 4τ kε2

0 for k ∈ N (6.14)

and ∣∣∣∣∣−
∫

Brk (y)

Du dx

∣∣∣∣∣ ≥ K0 + 1 − 2ε0

τ n

k−1∑
�=0

τ �/2

> K0 + 1 − 2ε0

τ n(1 − √
τ)

= K0 + 1 − κT > K0,

(6.15)

as well as

−
∫

Brk (y)

|Du| dx ≤ T − 1 + 2ε0

τ n

k−1∑
�=0

τ �/2

≤ T − 1 + 2ε0

τ n(1 − √
τ)

= T − 1 + κT ≤ T

for all k ∈ N. From the estimate (6.14) we infer that for every y ∈ U and ρ ≤ R0,

−
∫

Bρ(y)

|Du − (Du)y,ρ |2 dx ≤ −
∫

Bρ(y)

ψ
(
Du − (Du)y,ρ

)
dx ≤ Cε2

0
ρ

R0

for some constant C > 0. This implies u ∈ C1,1/2(U,RN ) by Morrey’s lemma.
From (6.15) we infer furthermore |Du| > K0 > M on U , so that u is actually a
solution of the regular system

div Dg(Du) ≡ 0 respectively div b(Du) ≡ 0 on U.

Classical regularity theory1 thus implies u ∈ C1,α(U,RN ) for every α ∈ (0, 1).
The proof is complete.

Proof of Theorems 2.3 and 2.7. By Lemma 4.4 and Corollary 4.6 we can assume
that the Assumptions 5.2 and 5.4 are satisfied, so that Theorem 6.3 is applicable. For
a map u ∈ W 1,p(�,RN ) as in the theorems to be proved, we define � := �1 ∪�p,
where �1 denotes the set of non-Lebesgue points of Du and

�p :=
{

x0 ∈ � : lim inf
r↘0

−
∫

Br (x0)

|Du − (Du)x0,r |p dx > 0

}
.

1 For instance one might use Theorem 6.1 combined with a standard iteration argument.
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This set satisfies |�| = 0, see e.g. [18, Theorem 6.13]. With the above choice of �,
Theorem 6.3 yields the claimed decomposition

� = � ∪ BL ∪ H,

where |Du| ≤ L on BL for the constant L determined in Theorem 6.3, and H is
open with u ∈ C1,α

loc (H,RN ) for every α ∈ (0, 1).

Proof of Theorem 2.5. Let u ∈ W 1,p(�,RN ) be a relaxed minimizer of F , that is
a minimizer of the functional

QF[u] :=
∫

�

Q f (Du) dx,

where f is a locally bounded Borel integrand that is asymptotically regular in the
sense of Definition 2.2 and Q f denotes its quasiconvex hull. From Lemma 4.1 we
infer that Q f (z) = f (z) for |z| � 1, so that Q f is itself asymptotically regular.
Theorem 2.5 is thus a special case of Theorem 2.3.

7. Everywhere regularity

In this section we turn our attention to the special cases n = 2 and N = 1, for which
we will prove everywhere regularity as stated in Theorem 2.8 and Theorem 2.9. For
this purpose, it is more convenient to choose a slightly different excess than in the
preceding section, namely

�v(y, r) := −
∫

Br (y)

|V (Dv) − V (Dv)y,r |2 dx, (7.1)

where V is defined in (3.2). Here, we abbreviated V (Dv)y,r := [V (Dv)]y,r .
We start with excess estimates for the regular case.

Theorem 7.1 (Excess estimate for n = 2). Let n = 2. There is a number β > 0
such that every weak solution v ∈ W 1,p(BR(x0),RN ) of the regular system (5.8)
on a ball BR(x0) ⊂ R2 satisfies

�v(x0, ρ) ≤ C
( ρ

R

)2β

�v(x0, R) (7.2)

for all ρ ∈ (0, R]. Here, the constants β and C depend only on p, γ and �.

This estimate is a consequence of V (Dv) ∈ W 1,2+κ
loc (BR(x0),RN ) for some

κ > 0, which follows from Gehring’s higher integrability lemma; see [3, Theorem
1.V]. For an elementary proof of Theorem 7.1 that avoids Gehring’s lemma, we
refer to [36, Lemma 8.2].
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Theorem 7.2 (Excess estimate for N= 1). Let N = 1. Theorem 7.1 holds anal-
ogously — with constants depending additionally on n and for p > 2 also on ν

— for solutions v ∈ W 1,p(BR(x0)) of regular equations of the form (5.8), if one
assumes in the case p > 2 additionally the existence of a continuous function
ν : [0, ∞) → [0, ∞) with ν(0) = 0 and

|Db(z2)− Db(z1)| ≤ (1+|z1|+|z2|)p−2ν
(|z2 − z1|2

)
for all z1, z2 ∈ Rn. (7.3)

Proof. We begin with the case p = 2. The estimate (7.2) holds trivially for ρ ∈
[ R

2 , R], so we need to consider only the case ρ < R
2 . By the difference quotient

method, one checks that the partial derivatives satisfy ∂kv ∈ W 1,2(BR/2(x0)) and
solve the linear equation∫

BR/2(x0)

Db(Dv)D∂kv · Dϕ dx = 0 for all ϕ ∈ W 1,2
0 (BR/2(x0)),

for any 1 ≤ k ≤ n. Since p = 2, the assumptions (5.5) and (5.6) imply that the
coefficients Db(Dv) are in L∞(BR/2(x0)) and are uniformly elliptic. Therefore, the
claim (7.2) is a consequence of the De Giorgi-Nash-Moser theorem, see e.g. [18,
Section 8.3] or [23, Chapter 7.3].

In the case p > 2, under the additional assumption (7.3), the claim can be
established following the proof of [20, Theorem 6.2].

Remark 7.3. As in Remark 6.2 we note that Theorem 7.1 and Theorem 7.2 hold
analogously for minimizers v of regular integrals.

For asymptotically regular problems, we have the following excess estimate
close to infinity.

Lemma 7.4. Let n = 2 or N = 1. There is an exponent α > 0, depending only
on n, p, γ and �, and there are numbers τ ∈ (0, 1) and K0 > 0, depending addi-
tionally on �1 and M, with the following property. Let u ∈ W 1,p(BR(x0),RN ) be
a minimizer of F from (1.1) or a solution of (2.2) under the Assumptions 5.2 and
5.4, respectively. Additionally, in the case N = 1, p > 2 suppose that (2.3) holds.
Then we have either

�u(x0, τ R) ≤ τ 2α�u(x0, R) or −
∫

BR(x0)

|Du|p dx ≤ K p
0 .

Once more, for N = 1, p > 2 all the constants depend additionally on ν.

Proof. As in the proof of Lemma 6.5, we choose the comparison map v ∈ u +
W 1,p

0 (BR(x0),RN ) as a minimizer of the regular functional G from (5.4) or as a
solution of the regular system (5.8), respectively. Since we have assumed n = 2
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or N = 1, Theorem 7.1, Theorem 7.22 and Remark 7.3 yield the following decay
estimate for the comparison map.

−
∫

Bτ R(x0)

|V (Dv)−V (Dv)x0,τ R|2dx ≤Cτ 2β−
∫

BR(x0)

|V (Dv)−V (Dv)x0,R|2dx (7.4)

for all τ ∈ (0, 1) and some constants β ∈ (0, 1) and C > 0, both depending only
on n, p, γ and � (and for N = 1, p > 2 on ν). For an ε ∈ (0, 1) to be fixed later,
we let K0 := K (ε) with the constant K (ε) from Lemma 5.3 or 5.5, respectively. If
the second alternative of the lemma does not hold with the constant K0, that is if

−
∫

BR(x0)

|Du|p dx > K p
0 ,

then we infer from Lemma 5.3 or 5.5, respectively, combined with the inequalities
(3.6) and (3.7), that

−
∫

BR(x0)

|V (Du) − V (Dv)|2 dx ≤ Cε−
∫

BR(x0)

|V (Du) − V (Du)x0,R|2 dx (7.5)

with a constant C depending only on p. Combining the excess estimate (7.4) and
(7.5), we arrive at

�u(x0, τ R)

≤ 2

[
−
∫

Bτ R(x0)

|V (Dv) − V (Dv)x0,τ R|2 dx + −
∫

Bτ R(x0)

|V (Du) − V (Dv)|2 dx

]

≤ C

[
τ 2β−

∫
BR(x0)

|V (Dv)−V (Dv)x0,R|2 dx + −
∫

Bτ R(x0)

|V (Du)−V (Dv)|2 dx

]

≤C

[
τ 2β−

∫
BR(x0)

|V (Du)−V (Du)x0,R|2 dx+τ−n−
∫

BR(x0)

|V (Du) − V (Dv)|2 dx

]

≤ C
(
τ 2β + ετ−n

)
�u(x0, R).

This implies the first alternative of the lemma if we fix any α ∈ (0, β) and choose
first τ ∈ (0, 1) and then ε ∈ (0, 1) sufficiently small.

Proof of Theorem 2.8 and Theorem 2.9. As in the proof of Theorem 2.5, we ob-
serve that the case of relaxed minimizers is a special case of minimizers of an

2 In the case N = 1, p > 2 we additionally need to check that (7.3) holds. However, enlarging
ν if necessary this follows from (2.3) and the fact that Db and D2g, respectively, are uniformly
continuous on bounded sets.
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asymptotically regular functional. Therefore, we consider from now on a map
u ∈ W 1,p(�,RN ) that is either a minimizer of F or a solution of (2.2), under
the assumptions of Theorem 2.8 or Theorem 2.9. As above, in view of Section 4
we may suppose that Assumptions 5.2 and 5.4 hold.
We fix a Lebesgue point x0 ∈ B of Du and define, with the constant K0 from the
preceding lemma,

R := inf

{
r ∈ (0, dist(x0, ∂�)) : −

∫
Br (x0)

|Du|p dx ≤ K p
0 + 1

}
.

If the above set is empty, we simply let R := dist(x0, ∂�). In the case R = 0, we
readily deduce the desired bound |Du(x0)|p ≤ K p

0 + 1. Thus, we consider from
now on the case R > 0. First of all we deduce the estimate

−
∫

BR(x0)

|Du|p dx ≤ max

(
K p

0 + 1,
‖Du‖p

L p(�)

dist(x0, ∂�)n

)
(7.6)

by distinguishing the cases R < dist(x0, ∂�) and R = dist(x0, ∂�) and using
the absolute continuity of the integral in the first case. We choose the constants
α, τ ∈ (0, 1) according to the preceding lemma and let rk := τ k R for k ∈ N0.
Keeping in mind that x0 is a Lebesgue point, we estimate

|Du(x0)|
≤ |(Du)x0,R| +

∞∑
k=0

|(Du)x0,rk+1 − (Du)x0,rk |

≤ −
∫

BR(x0)

|Du| dx +
∞∑

k=0

−
∫

Brk+1(x0)

|Du − (Du)x0,rk | dx

≤
(

−
∫

BR(x0)

|Du|2 dx

)1/2

+ C

τ n

∞∑
k=0

(
−
∫

Brk (x0)

|V (Du) − V (Du)x0,rk |2 dx

)1/2

=
(

−
∫

BR(x0)

|Du|2 dx

)1/2

+ C

τ n

∞∑
k=0

�
1/2
u (x0, rk).

Here, we used the Cauchy-Schwarz inequality and (3.7) in the third step. By the
choice of R and since rk ≤ R, the first alternative of Lemma 7.4 holds on all balls
Brk (x0), which implies

�u(x0, rk) ≤ τ 2αk�u(x0, R) ≤ τ 2αk−
∫

BR(x0)

(
1 + |Du|)p

dx .

Plugging this into the above estimate, we arrive at

|Du(x0)| ≤
[

1 + C

τ n

∞∑
k=0

ταk
] (

−
∫

BR(x0)

(
1 + |Du|p) dx

)1/2

,
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which implies by (7.6)

|Du(x0)|2 ≤ C(n, p, γ, �) max

(
K p

0 + 2,
‖Du‖p

L p(�)

dist(x0, ∂�)n
+ 1

)
.

The proof is complete.

8. Irregularity

Our construction of the counterexample in Theorem 2.6 is based on a recent inter-
esting result of Sverak & Yan [39], which we restate next.

8.1. A counterexample of Sverak & Yan, revisited

For ε > 0 consider the map wε on the unit ball B1 in Rn with values in the space of
n×n matrices, defined by

wε(x) := x ⊗ x

|x |1+ε
− 1

n
|x |1−ε En, (8.1)

where En denotes the n×n unit matrix. Clearly, wε is homogeneous of degree
1−ε and has its values in the symmetric and trace-free matrices. Thus, wε can be
regarded as an element of W 1,q(B1,RN ) for N = 1

2 n(n + 1) − 1 and every q < n
ε

.

Theorem 8.1 (Sverak & Yan [39]). Let N = 1
2 n(n + 1) − 1. There is a quadratic

null Lagrangian � : RNn → R and for every

0 < ε <
1

2

[√
3(n + 1)(n − 1) − (n + 1)

]
(8.2)

a smooth integrand gε : RNn → R with

γ |ξ |2 ≤ D2gε(z)(ξ, ξ) ≤ �|ξ |2
for all z, ξ ∈ RNn such that

Dgε(Dwε(x)) = D�(Dwε(x)) (8.3)

holds for every 0 �= x ∈ B1.

In the situation of the theorem we deduce the Euler equation∫
B1

Dgε(Dwε)Dϕ dx =
∫

B1

D�(Dwε)Dϕ dx = 0

for every ϕ ∈ W 1,2
0 (B1,RN ). From the strict convexity of gε we then infer that wε

is a minimizer leading to the following remark which in fact highlights the main
feature of Theorem 8.1.



496 CHRISTOPH SCHEVEN AND THOMAS SCHMIDT

Remark 8.2. Since the right-hand side of (8.2) is positive for every n ≥ 3, Theo-
rem 8.1 implies the existence of a non-Lipschitz minimizer of the regular variational
integral ∫

B1

gε(Du) dx .

Furthermore, for every n ≥ 5 it is possible to choose ε > 1, which yields un-
bounded minimizers.

Remark 8.3. By an elementary computation, the condition (8.2) turns out to be
equivalent with the condition

0 < ε <
n + 1 −

√
3(n+1)

n−1√
3(n+1)

n−1 + 1

appearing originally in [39]. Moreover, the reader should note that (8.2) implies
ε < n

2 and thus wε ∈ W 1,2(B1,RN ).

For our purposes, we will need the following refinement of Theorem 8.1.

Theorem 8.4. The smooth integrand gε and the null Lagrangian � from Theorem
8.1 can be chosen in such a way that there holds

�(z) ≤ gε(z) for all z ∈ RNn (8.4)

and
�(Dwε(x)) = gε(Dwε(x)) for all 0 �= x ∈ B1, (8.5)

where wε is defined by (8.1).

The proof of Theorem 8.4 is based on the same constructions used by Sverak
& Yan [39, Section 3] for the proof of Theorem 8.1; compare also [38]. Before
implementing the details let us fix some notation:

As already said above, the map wε defined in (8.1) takes its values in the space
of symmetric and trace-free matrices, which we interpreted as elements of RN .
Similarly, we can identify RNn with the space

T := {A ∈ (Rn)∗ ⊗ (Rn)∗ ⊗ (Rn)∗ : Ai jk = A jik,
∑n

i=1 Aiik = 0},
where we used the abbreviation Ai jk := A(ei , e j , ek). Furthermore, we employ the
notation

K ε
1 := {Dwε(x) : x ∈ Sn−1}.

As in [39] we decompose T = T ′ ⊕T3, where T ′ denotes the subspace of trace-free
tensors and T3 its orthogonal complement. Here, the trace is to be taken with respect
to the last two components. The space T ′ is decomposed further into the space T1 of
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the symmetric tensors and its orthogonal complement T2, so that T = T1 ⊕ T2 ⊕ T3.
It is shown in [39] that the quadratic function

�(z1 + z2 + z3) := −2|z1|2 + |z2|2 + n|z3|2 for zi ∈ Ti , i = 1, 2, 3

is a null Lagrangian. One checks that the derivative of wε in a point x ∈ Sn−1

can be written as Dwε(x) = W (1)(x) + W (2)(x) + W (3)(x) with W (i)(x) ∈ Ti for
i = 1, 2, 3, where W (2) ≡ 0 and

W (1)
i jk (x) = (1 + ε)

(
−xi x j xk + 1

n + 2
(xiδ jk + x jδik + xkδi j )

)
,

W (3)
i jk (x) = n + 1 − ε

n + 2

(
xiδ jk + x jδik − 2

n
δi j xk

)
for 1 ≤ i, j, k ≤ n. Consequently,

∣∣W (1)
∣∣2 ≡ (1 + ε)2(n − 1)

n + 2
and

∣∣W (3)
∣∣2 ≡ 2(n + 1 − ε)2(n − 1)

n(n + 2)

on Sn−1. It follows easily that there are positive constants �ε, mε and Nε with

�(z) = �ε, |D�(z)| = mε and |z| = Nε (8.6)

for all z ∈ K ε
1 . Here, the constant �ε is positive because (8.2) implies ε < n

2 .
Furthermore, there holds

∑n
i=1 ∂i (wε)i j (x) = 1

n (n + 1 − ε)(n − 1)x j for all 1 ≤
j ≤ n and x ∈ Sn−1, from which we infer that K ε

1 is diffeomorphic to Sn−1. In
particular, K ε

1 is a smooth submanifold of T1 ⊕ T3.
From now on, we restrict ourselves to the subspace T1 ⊕ T3 ⊂ T ∼= RNn and we
introduce an enlarged version Sε of K ε

1 in the following way: For a given µ > 0
and every z ∈ K ε

1 , let z′ := z − µ D�(z) and rµ = µ|D�(z)| = µmε. Then we
write

Sε :=
⋃

z∈K ε
1

Brµ(z′) ⊂ T1 ⊕ T3,

where Brµ(z′) denotes the ball in T1 ⊕ T3 with center z′ and radius rµ. We point out
that the set Sε is defined in such a way that K ε

1 ⊂ ∂Sε. Moreover, by the symmetry
of wε, the set Sε is point-symmetric with respect to the origin. Since K ε

1 is a smooth
submanifold, we know furthermore that ∂Sε is smooth if we choose µ > 0 small
enough.
With the notations introduced above we restate [39, Lemma 3.2]:

Lemma 8.5. For every ε > 0 with (8.2) there is a constant δ(ε) > 0 such that for
sufficiently small values of µ > 0 there holds

D�(z) · (ξ̃ − z) ≤ −2δ(ε)|ξ̃ − z|2 for all z ∈ K ε
1 , ξ̃ ∈ Sε. (8.7)
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Now we are in the position to prove Theorem 8.4.

Proof of Theorem 8.4. In the following we will write L : T × T → R for the
symmetric bilinear form defined by

L(z, z) = �(z) for z ∈ T .

Since � is a quadratic function, the inequality (8.7) can be written in the form

L(z, ξ̃ − z) ≤ −δ(ε)|ξ̃ − z|2 for all z ∈ K ε
1 , ξ̃ ∈ Sε, (8.8)

which implies in particular L(z, ξ̃ ) ≤ �ε for all z ∈ K ε
1 and ξ̃ ∈ Sε. We claim that,

furthermore, there holds

L(z̃, ξ̃ ) ≤ �ε for all z̃, ξ̃ ∈ Sε, (8.9)

provided µ > 0 is small enough. For the proof of this claim, we fix z̃, ξ̃ ∈ Sε

and choose a point z ∈ K ε
1 with z̃ ∈ Brµ(z′), where z′ = z − µD�(z) and rµ =

µ|D�(z)|. We begin with the observation

µ2|D�(z)|2 ≥ |z̃ − z′|2 = |z̃ − z + µ D�(z)|2
= |z̃ − z|2 + 2µ D�(z) · (z̃ − z) + µ2|D�(z)|2,

which implies

L(z, z̃ − z) = 1

2
D�(z) · (z̃ − z) ≤ − 1

4µ
|z̃ − z|2. (8.10)

Applying (8.8) and (8.10), we can estimate

L(z̃, ξ̃ ) = L(z, ξ̃ ) + L(z̃ − z, ξ̃ − z) + L(z̃ − z, z)

≤ �ε − δ(ε)|ξ̃ − z|2 + (2 + n)|z̃ − z| |ξ̃ − z| − 1

4µ
|z̃ − z|2

≤ �ε +
(

C(n, ε) − 1

4µ

)
|z̃ − z|2,

where we applied Young’s inequality in the last step. This implies the claim (8.9)
if we choose µ > 0 small enough. Next we consider the convex hull H ε of Sε ⊂
T1 ⊕ T3 and we will show �(z) ≤ �ε for all z ∈ H ε. Every z ∈ H ε can be written
in the form z = ∑n

i=0 λi z̃i with z̃i ∈ Sε and λi ≥ 0 with
∑n

i=0 λi = 1. Since L is
bilinear, we can estimate, using (8.9),

�(z) = L(z, z) =
n∑

i, j=0

λiλ j L(z̃i , z̃ j ) ≤ �ε

n∑
i, j=0

λiλ j = �ε (8.11)

for all z ∈ H ε.
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Next we will construct the convex integrand gε. Following [39] once more we
employ the Minkowski function, also called the gauge, of the convex set H ε. For
more details about this function we refer to [35]. Precisely, we define

Gε(z) := �εχ
2(z), where χ(z) = inf{t ≥ 0 : z ∈ t H ε}

for z ∈ T1 ⊕ T3. Since H ε is a convex neighborhood of the origin in T1 ⊕ T3, it
follows from the definition that Gε ≡ �ε on the boundary ∂ H ε. Keeping in mind
(8.11), we infer

�(z) ≤ Gε(z) (8.12)

first for all z ∈ ∂ H ε and finally for all z ∈ T1 ⊕ T3, since � and Gε are both
homogeneous of degree two and H ε is a neighborhood of the origin.

Letting ν(z) := D�(z)
|D�(z)| for z ∈ K ε

1 , we point out that by (8.7), the vector field ν,
defined on K ε

1 , is a field of unit normal vectors of ∂Sε. For a suitable neighborhood
U ε of K ε

1 , we extend ν to a smooth vector field of unit normal vectors on U ε ∩ ∂Sε.
Diminishing the neighborhood U ε if necessary, we deduce from (8.7) that for all
z, ξ ∈ U ε ∩ ∂Sε there holds

ν(z) − ν(ξ)

|ξ − z| · ξ − z

|ξ − z| ≤ −3
δ(ε)

mε

.

Letting ξ → z, we infer

−DV ν(z) · V ≤ −3
δ(ε)

mε

< 0

for all z ∈ U ε ∩ ∂Sε and V ∈ Tanz(∂Sε). We recall that the principal curvatures of
∂Sε ∩ U ε are defined as the eigenvalues of the shape operator Aν(V ) = −(DV ν)�.
Thus, we conclude from the above estimate that all the principal curvatures are neg-
ative and bounded away from zero, which implies that ∂Sε ∩ U ε is strictly elliptic.
Combining this with (8.7), we infer

∂ H ε ∩ U ε = ∂Sε ∩ U ε

if Uε is chosen sufficiently small. In particular, K ε
1 ⊂ ∂ H ε, so that

Gε(z) = �ε = �(z) for all z ∈ K ε
1 . (8.13)

Moreover, the strict ellipticity of ∂ H ε implies that Gε is strictly convex close to K ε
1

in the sense

D2Gε(z)(ξ, ξ) ≥ cε|ξ |2 for all z ∈ Uε and ξ ∈ T1 ⊕ T3, (8.14)

with a suitable constant cε > 0. Following [39] we obtain the convex integrand
gε from Gε by a smoothing technique which preserves the identity (8.13) and does
not diminish the function Gε away from the origin. We provide a rereading of this
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smoothing process for the convenience of the reader. First, we choose a kernel
ϕ ∈ C∞

cpt([ 1
2 , 1]) with

∫
T1⊕T3

ϕ(|ξ |) dξ = 1 and let ϕδ(ξ) := δ− dim(T1⊕T3)ϕ(δ−1ξ).
Since χ is convex and homogeneous of degree one, the function

χ̃(z) :=
∫

T1⊕T3

χ(z + |z|ξ)ϕδ(|ξ |) dξ for z ∈ T1 ⊕ T3

is also convex and homogeneous of degree one, and additionally smooth; see [37,
Thm. 3.3.1]. Consequently, the function

G̃ε(z) := �εχ̃
2(z) + τ |z|2 for z ∈ T1 ⊕ T3

is strictly convex and homogeneous of degree two for any τ > 0. Note that G̃ε

depends on δ and τ , but we suppress these dependences to facilitate the reading.
Since G̃ε → Gε in the C2-norm as δ, τ ↘ 0, we conclude

D2G̃ε(z)(ξ, ξ) ≥ cε

2
|ξ |2 for all z ∈ U ε and ξ ∈ T1 ⊕ T3, (8.15)

if δ and τ are chosen sufficiently small. We stress that the constant cε can be chosen
independent of τ if we restrict ourselves to z ∈ U ε. We record that as a consequence
of Jensen’s inequality and (8.12), there holds

G̃ε(z) ≥ �εχ
2
(∫

T1⊕T3

(z + |z|ξ)ϕδ(|ξ |) dξ

)
= �εχ

2(z) = Gε(z) ≥ �(z) (8.16)

for all z ∈ T1 ⊕ T3. Since the above smoothing process might have changed Gε in
K ε

1 , we choose a cut-off function η̃ ∈ C∞
0 (U ε) with η̃ ≡ 1 in a smaller neighbor-

hood V ε ⊂ U ε of K ε
1 , and let η(z) := η̃(Nε

z
|z| ), where Nε is defined by (8.6). We

write

G∗
ε(z) := (1 − η(z)) G̃ε(z) + η(z)Gε(z) for 0 �= z ∈ T1 ⊕ T3

and G∗
ε(0) := 0. Obviously, G∗

ε is homogeneous of degree two. In order to show
that G∗

ε is strictly convex on U ε, we calculate for z ∈ U ε and an arbitrary ξ ∈
T1 ⊕ T3

D2G∗
ε(z)(ξ, ξ) ≥ (1 − η(z))D2G̃ε(z)(ξ, ξ) + η(z)D2Gε(z)(ξ, ξ)

− C‖G̃ε − Gε‖C1(U ε) |ξ |2

≥
(cε

2
− C‖G̃ε − Gε‖C1(U ε)

)
|ξ |2

(8.17)

by (8.14) and (8.15). Since ‖G̃ε − Gε‖C1(U ε) can be made arbitrarily small by
choosing the parameters δ, τ > 0 small enough, we infer for suitable choices of δ
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and τ that G∗
ε is strictly convex on U ε. Keeping in mind the strict convexity of G̃ε

and the homogeneity of G∗
ε , we deduce that G∗

ε is strictly convex and smooth away
from the origin. Recalling (8.16), we know furthermore

�(z) ≤ G∗
ε(z) for all z ∈ T1 ⊕ T3, (8.18)

and from (8.13), combined with the homogeneity of G∗
ε , � and wε, we infer

�(Dwε(x)) = G∗
ε(Dwε(x)) for all 0 �= x ∈ B1. (8.19)

In order to make G∗
ε smooth and strictly convex on all of T1 ⊕ T3, we choose a cut-

off function ζ ∈ C∞
0 (BNε/2) with ζ ≡ 1 on BNε/4 and a radial mollifying kernel

ψρ with smoothing radius ρ > 0. For a parameter β > 0, let

g̃ε(z) := ζ(z)
[
ψρ ∗ G∗

ε(z) + β|z|2] + (1 − ζ(z))G∗
ε(z).

This function is smooth on T1 ⊕ T3 and a similar computation as in (8.17) shows
that for sufficiently small values of the parameters ρ, β > 0, g̃ε is strictly convex
on T1 ⊕ T3. Finally, letting

gε(z) := g̃ε(z1 + z3) + |z2|2 for z = z1 + z2 + z3 ∈ T ∼= RNn,

where zi ∈ Ti for i = 1, 2, 3, we arrive at a function gε : RNn → R which
is smooth and strictly convex on RNn . The inequality (8.18) implies, by another
application of Jensen’s inequality as in (8.16), that � ≤ gε on RNn , so that the first
claim (8.4) is satisfied. Since |Dwε(x)| = |x |−ε Nε ≥ Nε for x ∈ B1, we infer
from (8.19) that the second claim (8.5) of the theorem is valid. This completes the
proof.

8.2. A singular set of positive measure

The remainder of this section will be devoted to the proof of Theorem 2.6. In
fact, introducing first some additional notation we will even establish a somewhat
stronger result.

In the following, cubes will be considered as open subsets of Rn . We write Q0
for the cube ]− 1

2 , 1
2 [n .

Definition 8.6. For a function u on Q0 and a regularity class C we define the reg-
ular set

RC (u) := {x ∈ Q0 : u is of class C in a neighborhood of x}
and the singular set

SC (u) := Q0 \ RC (u).

Moreover, as in (1.2) we abbreviate R(u) := RC0,1(u) and S(u) := SC0,1(u).
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With these notations we formulate the main result of this section providing
wild solutions of asymptotically regular problems:

Theorem 8.7. Let N = 1
2 n(n + 1) − 1. For every

0 < ε <
1

2

[√
3(n + 1)(n − 1) − (n + 1)

]
there are positive constants M, γ and �, a function uε ∈ W 1,2

0 (Q0,RN ) and a
smooth function fε : RNn → R depending only on n and ε with the following three
properties:

γ |ξ |2 ≤ D2 fε(z)(ξ, ξ) ≤ �|ξ |2 for |z| > M and ξ ∈ RNn;∫
Q0

fε(Duε) dx ≤
∫

Q0

fε(Dϕ) dx for every ϕ ∈ W 1,2
0 (Q0,RN );

|S
W 1, n

ε
(uε)| > 0 and |SC0,α (uε)| > 0 for every max{1 − ε, 0} < α ≤ 1.

Moreover, if ε > 1 holds we even have

|S
L

n
ε−1

(uε)| > 0.

Remark 8.8. In particular, |S(uε)|>0 may occur for every n ≥3, and |SL∞(uε)|>
0 for every n ≥ 5. These restrictions on the dimension are optimal in the case
p = 2 considered here. To be more precise, if u ∈ W 1,2(�,RN ) is a solution of an
asymptotically regular problem, Theorem 2.8 implies S(u) = ∅ for n = 2, while
for n ∈ {3, 4} we have SC0,α (u) = ∅ for some α > 0 by [36, Theorem 8.1].

The proof of Theorem 8.7 is based on the results of Section 8.1 and a Cantor
type construction3. It will be carried out in a series of lemmas.

We define vε : B1 → RN by

vε(x) :=
wε(x) for x ∈ B1/2

2(1 − |x |)wε

(
x

2|x |
)

for x ∈ B1 \ B1/2,

where wε is defined in (8.1). Clearly, we have

vε ∈ W 1,q
0 (B1,RN ) (8.20)

for every q < n
ε

and involving the homogeneity of wε it is not difficult to see

|Dvε| ≤ L on B1 \ B1/8 (8.21)

for some constant L depending only on n and ε.

3 We refer the reader to [9] for another Cantor type construction of a minimizer with a large
singular set.
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Next, we choose a smooth cut-off function η : RNn → [0, 1] with η(z) = 0
for |z| ≤ L and η(z) = 1 for |z| ≥ L + 1 and define fε : RNn → R by

fε(z) := η(z)gε(z) + (1 − η(z))�(z),

where gε and � are the integrands from Section 8.1. Clearly, we have

�(z) = fε(z) for |z| ≤ L (8.22)

and
γ |ξ |2 ≤ D2 fε(z)(ξ, ξ) ≤ �|ξ |2 for |z| > L + 1.

In particular, fε is asymptotically regular. Moreover, (8.4) and (8.5) give

�(z) ≤ fε(z), (8.23)

�(Dwε(x)) = fε(Dwε(x)) (8.24)

for all z ∈ RNn and 0 �= x ∈ B1.
Next we will arrange the minimizers of Section 8.1 on a wild set: For every

k ∈ N ∪ {0} we subdivide Q0 into
∏k

i=0 3in disjoint cubes with edges of length∏k
i=0 3−i and define Wk as the collection of these cubes and Yk as the set of their

centers. We point out that for every cube Q ∈ Wk , its predecessors are unique; that
is for every i ≤ k there is a unique cube in Wi containing Q. Moreover, we note
{0} = Y0 ⊂ Y1 ⊂ Y2 ⊂ Y3 ⊂ . . ..

We define another collection of cubes inductively. We set V0 := ∅ and for
k ∈ N we denote by Vk the collection of all cubes Q in Wk with centers in Yk−1

such that Q is not contained in some cube of
⋃k−1

i=0 Vi . Finally we write Xk for the
set of centers of cubes in Vk .

Our first goal is now to show that the closure of
⋃∞

i=0 Xi has positive measure.
Actually, this will follow from the next two lemmas.

Lemma 8.9. Denote by A the union of the closures of all cubes in
⋃∞

i=0 Vi . Then,
the set Q0 \ A is contained in the closure of

⋃∞
i=0 Xi .

Proof. Consider an arbitrary point x ∈ Q0 \ A and fix k ∈ N. Then, x is contained
in the closure of a cube Qk ∈ Wk−1 with center xk ∈ Yk−1. By the definition of
A, the cube Qk is not contained in some cube of

⋃k−1
i=0 Vi . Now consider the cube

Q̃k ∈ Wk with center at xk . Since the predecessors are unique, Q̃k is not contained
in a cube of

⋃k−1
i=0 Vi . Thus we have Q̃k ∈ Vk and xk ∈ Xk . Finally, for the

sequence xk ∈ ⋃∞
i=0 Xi just defined we have

|xk − x | ≤ 1

2
diam Qk ≤

√
n

2
31−k .

Thus, x is in the closure of
⋃∞

i=0 Xi and the lemma is proved.
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Lemma 8.10. Denote by A the union of the closures of all cubes in
⋃∞

k=0 Vk. Then,
we have |Q0 \ A| > 0.

Proof. Clearly, Yk−1 has
∏k−1

i=0 3in elements and thus Vk contains at most
∏k−1

i=0 3in

cubes. Furthermore, the closure of every cube in Wk — and in particular of every
cube in Vk — has measure

∏k
i=0 3−in . Thus, we get

|A| ≤
∞∑

k=1

3−kn = 3−n

1 − 3−n
< 1

and the claim is established.

We will now construct a minimizer uε on Q0 that is singular near all points of⋃∞
k=0 Xk . Setting

rk :=
k∏

i=0

6−i

we note that all the balls Brk (x) with x ∈ Xk and k ∈ N are mutually disjoint.
Finally, we introduce uε setting

uε(y) :=
rkvε

(
y − x

rk

)
if y ∈ Brk (x) for some x ∈ Xk and some k ∈ N

0 otherwise
.

Lemma 8.11. For every q < n
ε

we have uε ∈ W 1,q
0 (Q0,RN ).

Proof. The claim follows easily from (8.20) and the calculation∫
Q0

[|uε|q + |Duε|q
]

dx =
∞∑

k=1

∑
y∈Xk

rn
k

∫
B1

[
rq

k |vε|q + |Dvε|q
]

dx

≤
∞∑

k=1

(
3

6

)kn ∫
B1

[|vε|q + |Dvε|q
]

dx < ∞.

Here, in the last estimate we used the definition of rk and the fact that |Xk | contains
at most

∏k
i=0 3in elements.

Proposition 8.12. Let

0 < ε <
1

2

[√
3(n + 1)(n − 1) − (n + 1)

]
.

Then, we have uε ∈ W 1,2
0 (Q0,RN ) and∫

Q0

fε(Duε) dx ≤
∫

Q0

fε(Dϕ) dx for every ϕ ∈ W 1,2
0 (Q0,RN ).
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Proof. Recalling ε < n
2 , Lemma 8.11 gives uε ∈ W 1,2

0 (Q0,RN ). For the proof of
the minimizing property we first claim

�(Duε) = fε(Duε) on Q0. (8.25)

To verify (8.25) we fix a Lebesgue point y ∈ Q0 of Duε and distinguish two cases:
If y is in Brk/2(x) for some x ∈ Xk and some k ∈ N, then we have Duε(y) =
Dwε(

y−x
rk

) and (8.24) gives fε(Duε(y)) = �(Duε(y)). Otherwise, we see from the
construction of uε that |Duε(y)| ≤ L , so that fε(Duε(y)) = �(Duε(y)) follows
from the definition of fε. Thus, (8.25) is proved in any case.

Consequently, exploiting in turn (8.25), the fact that � is a null Lagrangian and
(8.23) we find∫

Q0

fε(Duε) dx =
∫

Q0

�(Duε) dx =
∫

Q0

�(Dϕ) dx ≤
∫

Q0

fε(Dϕ) dx (8.26)

for any ϕ ∈ W 1,2
0 (Q0,RN ), thus completing the proof.

Proof of Theorem 8.7. In the situation of the theorem let C denote one of the reg-

ularity classes W 1, n
ε , C0,α , L

n
ε−1 , where max{1 − ε, 0} < α ≤ 1. In view of the

preceding considerations, in particular of Proposition 8.12, it just remains to prove
|SC (uε)| > 0. To this aim we first note that, by the definition of wε in Section 8.1,
the function wε is not of class C near 0. From the construction of uε we deduce⋃∞

i=0 Xi ⊂ SC (uε). Since SC (uε) is — by definition — closed in Q0 we infer
that the closure of

⋃∞
i=0 Xi is still contained in SC (uε). Thus, Lemma 8.9 and

Lemma 8.10 give |SC (uε)| > 0.

Remark 8.13. In Theorem 8.7 one may additionally choose fε such that fε is qua-
siconvex. To see this it suffices to replace fε with its quasiconvex hull observing
that (8.22), (8.23) and (8.24) are preserved.

Proof of Theorem 2.6. Theorem 2.6 is essentially a particular case of Theorem 8.7
and Remark 8.8 with f := fε. It just remains to reason that the cube Q0 may be
replaced by any non-empty bounded open set �. To see this we fix such a set �

and assume — by scaling and translation — that Q0 ⊂ � holds. Then we define
u ∈ W 1,2(�,RN ) as the extension by 0 of the map uε ∈ W 1,2

0 (Q0,RN ) from
Theorem 8.7. Recalling the above construction, in particular f (0) = fε(0) = �(0),
one easily sees that (8.25) and (8.26) still hold if we replace uε by u and Q0 by �.
Hence, u is a minimizer of F on �. The remaining claims of Theorem 2.6 are now
obvious.
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