We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.
@article{ASNSP_2008_5_7_4_635_0, author = {Mancini, Gianni and Sandeep, Kunnath}, title = {On a semilinear elliptic equation in $\mathbb {H}^n$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {635--671}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {4}, year = {2008}, mrnumber = {2483639}, zbl = {1179.35127}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/} }
TY - JOUR AU - Mancini, Gianni AU - Sandeep, Kunnath TI - On a semilinear elliptic equation in $\mathbb {H}^n$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 635 EP - 671 VL - 7 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/ LA - en ID - ASNSP_2008_5_7_4_635_0 ER -
%0 Journal Article %A Mancini, Gianni %A Sandeep, Kunnath %T On a semilinear elliptic equation in $\mathbb {H}^n$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 635-671 %V 7 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/ %G en %F ASNSP_2008_5_7_4_635_0
Mancini, Gianni; Sandeep, Kunnath. On a semilinear elliptic equation in $\mathbb {H}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 4, pp. 635-671. http://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/
[1] A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 313-342. | EuDML | Numdam | MR | Zbl
, and ,[2] On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc. 129 (2001), 1233-1246. | MR | Zbl
,[3] The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space, Math. Res. Lett. 15 (2008), 613-622. | MR | Zbl
, and ,[4] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), 47-92. | MR | Zbl
, and ,[5] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | MR | Zbl
and ,[6] A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal. 163 (2002), 259-293. | MR | Zbl
and ,[7] Nonlinear Liouvile Theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), 161-215. | MR | Zbl
and ,[8] Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator, Methods Appl. Anal., in press. | MR | Zbl
and ,[9] Hardy Sobolev inequalities and hyperbolic symmetry, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.19 (2008), 189-197. | MR | Zbl
, , and ,[10] “Eigenvalues in Riemannian Geometry", Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984. | MR | Zbl
,[11] “Theory of Ordinary Differential Equations", TATA McGraw-Hill Publishing Co. LTD, New Delhi, 1985. | MR | Zbl
and ,[12] Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2003), 725-734. | MR | Zbl
,[13] Classification of solutions of a critical Hardy-Sobolev operator, J. Differential Equations 224 (2006), 258-276. | MR | Zbl
, and ,[14] Some existence results for the Webster scalar curvature problem in presence of symmetry, Ann. Mat. Pura Appl. 183 (2004), 469-493. | MR | Zbl
and ,[15] Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411-448. | MR | Zbl
and ,[16] Hardy-Sobolev-Maz'ya inequalities: symmetry and breaking symmetry of extremal functions, to appear on Contemp. Math. | MR | Zbl
and ,[17] “Sobolev Spaces on Riemannian Manifolds", Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, 1996. | MR | Zbl
,[18] Kam-Li and Yi, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), 339-363. | MR | Zbl
[19] A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pure Appl. 81 (2002), 983-997. | MR | Zbl
and ,[20] Maz'ya and G. Vladimir, “Sobolev Spaces", Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. | MR
[21] Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal. 68 (2008), 3972-3986. | MR | Zbl
,[22] Sobolev inequalities for weighted gradients, Comm. Partial Differential Equations 31 (2006), 1479-1504. | MR | Zbl
,[23] Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J. 131 (2006), 167-202. | MR | Zbl
and ,[24] Cylindrical symmetry of extremals of a Hardy-Sobolev inequality, Ann. Mat. Pura Appl. (4) 183 (2004), 165-172. | MR | Zbl
and ,[25] Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), 811-815. | MR | Zbl
, and ,[26] The Brézis-Nirenberg problem on . Existence and uniqueness of solutions. Elliptic and parabolic problems, (Rolduc/Gaeta, 2001), 283-290, World Sci. Publ., River Edge, NJ, 2002. | MR | Zbl
,[27] “Das Brezis-Nirenberg Problem im Hn”, PhD thesis, Universität Basel, 2003.
,[28] On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality, Ann. Mat. Pura Appl. (4) 186 (2007), 645-662. | MR | Zbl
and ,