A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 3, pp. 313-342.
@article{AIHPC_2002__19_3_313_0,
     author = {Almeida, Lu{\'\i}s and Damascelli, Lucio and Ge, Yuxin},
     title = {A few symmetry results for nonlinear elliptic {PDE} on noncompact manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {313--342},
     publisher = {Elsevier},
     volume = {19},
     number = {3},
     year = {2002},
     mrnumber = {1956953},
     zbl = {1029.35096},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2002__19_3_313_0/}
}
TY  - JOUR
AU  - Almeida, Luís
AU  - Damascelli, Lucio
AU  - Ge, Yuxin
TI  - A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2002
SP  - 313
EP  - 342
VL  - 19
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/item/AIHPC_2002__19_3_313_0/
LA  - en
ID  - AIHPC_2002__19_3_313_0
ER  - 
%0 Journal Article
%A Almeida, Luís
%A Damascelli, Lucio
%A Ge, Yuxin
%T A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 2002
%P 313-342
%V 19
%N 3
%I Elsevier
%U http://www.numdam.org/item/AIHPC_2002__19_3_313_0/
%G en
%F AIHPC_2002__19_3_313_0
Almeida, Luís; Damascelli, Lucio; Ge, Yuxin. A few symmetry results for nonlinear elliptic PDE on noncompact manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 3, pp. 313-342. http://www.numdam.org/item/AIHPC_2002__19_3_313_0/

[1] Alexandrov A., Uniqueness theorem for surfaces in the large, Vestnik Leningrad Univ. Math. 11 (1956) 5-17. | MR

[2] Almeida L., Ge Y., Symmetry results for positive solutions of some elliptic equations on manifolds, Annals Global Anal. Geom. 18 (2000) 153-170. | MR | Zbl

[3] Berestycki H., Caffarelli L.A., Nirenberg L., Symmetry for elliptic equations in a half space, in: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, pp. 27-42. | MR | Zbl

[4] Berestycki H., Caffarelli L.A., Nirenberg L., Inequalities for second order elliptic equations with applications to unbounded domains. I, Duke Math. J. 81 (1996) 467-494. | MR | Zbl

[5] Berestycki H., Caffarelli L.A., Nirenberg L., Monotonicity for elliptic equations in unbounded Lipshitz domains, Comm. Pure Appl. Math. 50 (1997) 1089-1111. | MR | Zbl

[6] Berestycki H., Caffarelli L.A., Nirenberg L., Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997) 69-94. | Numdam | MR | Zbl

[7] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22 (1991) 1-39. | MR | Zbl

[8] Damascelli L., Pacella F., Ramaswamy M., Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal. 148 (1999) 291-308. | MR | Zbl

[9] Damascelli L., Ramaswamy M., Symmetry of C1 solutions of p-Laplace equations in RN, Advanced Nonlinear Studies 1 (2001) 40-64. | MR | Zbl

[10] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209-243. | MR | Zbl

[11] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN, Adv. Math., Suppl. Stud. 7A (1981) 369-402. | MR | Zbl

[12] Hebey E., Introduction à l'analyse non linéaire sur les variétés, Fondations, Diderot Editeur, Paris, 1997. | Zbl

[13] Hebey E., Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, 1635, Springer-Verlag, Berlin, 1996. | MR | Zbl

[14] Li C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations 16 (1991) 585-615. | MR | Zbl

[15] Li Y., Ni W.M., Radial symmetry of positive solutions of nonlinear elliptic equations in RN, Comm. Partial Differential Equations 18 (1993) 1043-1054. | MR | Zbl

[16] Serrin J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971) 304-318. | MR | Zbl

[17] Serrin J., Zou H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal. 148 (1999) 265-290. | MR | Zbl

[18] Terracini S., Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations 8 (1995) 1911-1922. | MR | Zbl

[19] Terracini S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (1996) 241-264. | MR | Zbl