Using a calibration method we prove that, if is a closed regular hypersurface and if the function is discontinuous along and regular outside, then the function which solves
@article{ASNSP_2002_5_1_3_603_0, author = {Morini, Massimiliano}, title = {Global calibrations for the non-homogeneous {Mumford-Shah} functional}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {603--648}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {3}, year = {2002}, mrnumber = {1990674}, zbl = {1170.49308}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/} }
TY - JOUR AU - Morini, Massimiliano TI - Global calibrations for the non-homogeneous Mumford-Shah functional JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 603 EP - 648 VL - 1 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/ LA - en ID - ASNSP_2002_5_1_3_603_0 ER -
%0 Journal Article %A Morini, Massimiliano %T Global calibrations for the non-homogeneous Mumford-Shah functional %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 603-648 %V 1 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/ %G en %F ASNSP_2002_5_1_3_603_0
Morini, Massimiliano. Global calibrations for the non-homogeneous Mumford-Shah functional. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 3, pp. 603-648. http://www.numdam.org/item/ASNSP_2002_5_1_3_603_0/
[1] The calibration method for the Mumford-Shah functional, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 249-254. | MR | Zbl
- - ,[2] G., The calibration method for the Mumford-Shah functional and free discontinuity problems, Preprint SISSA, Trieste, 2001. | MR | Zbl
- -[3] Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113 (1995), 191-246. | MR | Zbl
,[4] A compactness theorem for a new class of variational problems, Boll. Un. Mat. It. 3-B (1989), 857-881. | MR | Zbl
,[5] “Functions of Bounded Variation and Free-Discontinuity Problems”, Oxford University Press, Oxford, 2000. | MR | Zbl
- - ,[6] On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Anal. Non Linéaire. 13 (1996), 485-528. | Numdam | MR | Zbl
,[7] Minimizing movements of the Mumford-Shah energy, Discrete Contin. Dynam. Systems 3 (1997), 153-174. | MR | Zbl
- ,[8] Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity set, J. Math. Pures Appl. 79 (2000), 141-162. | MR | Zbl
- - ,[9] Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. | MR | Zbl
- ,[10] Shape Analysis via oriented distance functions, J. Funct. Anal. 123 (1994), 129-201. | MR | Zbl
- ,[11] On explicit solutions for the problem of Mumford and Shah, Comm. Contemp. Math. 1 (1999), 201-212. | MR | Zbl
- ,[12] Gradient flow for the one-dimensional Mumford-Shah functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 145-193. | EuDML | Numdam | MR | Zbl
,[13] “Majorations en norme du maximum de la résolvante du laplacien dans un polygone. Nonlinear partial differential equations and their applications”, Collège de France Seminar, Vol. XII (Paris, 1991-1993), 87-96, Pitman Res. | MR | Zbl
,[14] “Elliptic Problems in Nonsmooth Domains”, Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. | MR | Zbl
,[15] “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. | MR | Zbl
,[16] Local calibrations for minimizers of the Mumford-Shah functional with a triple junction, Preprint SISSA, Trieste, 2001. | MR | Zbl
,[17] Functional depending on curvatures with constraints, Rend. Sem. Mat. Univ. Padova 104 (2000), 173-199. | EuDML | Numdam | MR | Zbl
- ,[18] Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set, To appear on Ann. Inst. H. Poincaré, Anal. non linéaire. | EuDML | Numdam | MR | Zbl
- ,[19] Boundary detection by minimizing functionals, I, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (San Francisco, 1985).
- ,[20] Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989), 577-685. | MR | Zbl
- ,[21] Limit theorems for a variational problem arising in computer vision, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 1-49. | EuDML | Numdam | MR | Zbl
,