@article{ASNSP_1998_4_27_1_145_0, author = {Gobbino, Massimo}, title = {Gradient flow for the one-dimensional {Mumford-Shah} functional}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {145--193}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 27}, number = {1}, year = {1998}, mrnumber = {1658873}, zbl = {0931.49010}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/} }
TY - JOUR AU - Gobbino, Massimo TI - Gradient flow for the one-dimensional Mumford-Shah functional JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 145 EP - 193 VL - 27 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/ LA - en ID - ASNSP_1998_4_27_1_145_0 ER -
%0 Journal Article %A Gobbino, Massimo %T Gradient flow for the one-dimensional Mumford-Shah functional %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 145-193 %V 27 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/ %G en %F ASNSP_1998_4_27_1_145_0
Gobbino, Massimo. Gradient flow for the one-dimensional Mumford-Shah functional. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 27 (1998) no. 1, pp. 145-193. http://www.numdam.org/item/ASNSP_1998_4_27_1_145_0/
[ 1 ] A Compactness Theorem for a New Class of Functions of Bounded Variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881. | MR | Zbl
,[2] Existence Theory for a New Class of Variational Problems, Arch. Rational Mech. Anal. 111 (1990), 291-322. | MR | Zbl
,[3] Free Discontinuity Problems and Special Functions with Bounded Variation, Proceedings ECM2 Budapest 1996, Progress in Mathematics 168 (1998), 15-35. | MR | Zbl
,[4] Energies in SB V and Variational Models in Fracture Mechanics, in Homogenization and Applications to Material Sciences, (D. Cioranescu, A. Damlamian, P. Donato eds.), Gakuto, Gakkotosho, Tokio, Japan, 1997, p. 1-22. | MR | Zbl
- ,[5] Approximation of Functionals Depending on Jumps by Elliptic Functionals via r-Convergence, Comm. Pure Appl. Math. 43 (1990), 999-1036. | MR | Zbl
- ,[6] On the Approximation of Free Discontinuity Problems, Boll. Un. Mat. Ital. 6-B (1992), 105-123. | MR | Zbl
,[7] Nonlocal Approximation of the Mumford-Shah Functional, Calc. Var. Partial Differential Equations 5 (1997), 293-322. | MR | Zbl
- ,[8] Opérateures Maximaux Monotones et Semigroups de Contraction dans les Espaces de Hilbert", North-Holland Mathematics Studies, n. 5 (1973). | MR | Zbl
, "[9] Analyse Fonctionnelle: Theorie et Applications, Masson, 1987. | MR | Zbl
,[10] Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math. 55 (1995), 827-863. | MR | Zbl
,[11] Discrete Approximation of the Mumford-Shah Functional in Dimension two, RAIRO Modèl. Math. Anal. Numèr., to appear | Numdam | MR | Zbl
- ,[12] Minimizing Movements of the Mumford and Shah Energy, Discrete and Continuous Dynamical Systems, vol. 3, n. 2 (1997), 153-174. | MR | Zbl
- ,[13] An Introduction to Γ-convergence", Birkhäuser, Boston, 1993. | Zbl
, "[14] Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal. 108 (1989), 195-218. | MR | Zbl
- - ,[15] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842-850. | MR | Zbl
- ,[16] Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 73 (1982), 6-14. | MR | Zbl
- - ,[17] Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. | MR | Zbl
- , "[18] Finite Difference Approximation of the Mumford-Shah Functional, Comm. Pure Appl. Math. 51 (1998), 197-228. | MR | Zbl
,[19] The phenomenon of rupture and flow in solids, Phil. Trans. Royal Soc. London Ser. A 221 (1920), 163-198.
,[20] Convergence of the Allen-Cahn Equation to Brakke's Motion by Mean Curvature, J. Differential Geom. 38 (1993), 417-461. | MR | Zbl
,[21] Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problem, Comm. Pure Appl. Math. 17 (1989), 577-685. | MR | Zbl
- ,[22] Weakly Differentiable Functions", Springer, Berlin, 1989. | MR | Zbl
, "