As a model for the energy of a brittle elastic body we consider an integral functional consisting of two parts: a volume one (the usual linearly elastic energy) which is quadratic in the strain, and a surface part, which is concentrated along the fractures (i.e. on the discontinuities of the displacement function) and whose density depends on the jump part of the strain. We study the problem of the lower semicontinuous envelope of such a functional under the assumptions that the surface energy density is positively homogeneous of degree one and that additional geometrical constraints, such as a shearing condition or a normal detachement condition, are imposed on the fractures.
@article{ASNSP_2002_5_1_2_275_0, author = {Braides, Andrea and Defranceschi, Anneliese and Vitali, Enrico}, title = {Relaxation of elastic energies with free discontinuities and constraint on the strain}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {275--317}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {2}, year = {2002}, mrnumber = {1991141}, zbl = {1170.49306}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2002_5_1_2_275_0/} }
TY - JOUR AU - Braides, Andrea AU - Defranceschi, Anneliese AU - Vitali, Enrico TI - Relaxation of elastic energies with free discontinuities and constraint on the strain JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 275 EP - 317 VL - 1 IS - 2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2002_5_1_2_275_0/ LA - en ID - ASNSP_2002_5_1_2_275_0 ER -
%0 Journal Article %A Braides, Andrea %A Defranceschi, Anneliese %A Vitali, Enrico %T Relaxation of elastic energies with free discontinuities and constraint on the strain %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 275-317 %V 1 %N 2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2002_5_1_2_275_0/ %G en %F ASNSP_2002_5_1_2_275_0
Braides, Andrea; Defranceschi, Anneliese; Vitali, Enrico. Relaxation of elastic energies with free discontinuities and constraint on the strain. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 275-317. http://www.numdam.org/item/ASNSP_2002_5_1_2_275_0/
[1] Energies in and variational models in fracture mechanics, In: “Homogenization and applications to material sciences”, (Nice, 1995) D. Cioranescu - A. Damlamian - P. Donato (eds.), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1995, pp. 1-22. | MR | Zbl
- ,[2] Fine properties of functions with bounded deformation, Arch. Ration. Mech. Anal. 139 (1997), 201-238. | MR | Zbl
- - ,[3] “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford University Press, 2000. | MR | Zbl
- - ,[4] A class of convex non-coercive functionals and masonry-like materials, Ann. Inst. H. Poincaré Anal. Non Linéaire 2(4) (1985), 261-307. | Numdam | MR | Zbl
,[5] A relaxation theorem in the space of functions with bounded deformation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), XXIX (2000), 19-49. | Numdam | MR | Zbl
- - ,[6] Compactness and lower semicontinuity in , Math. Z. 228 (1998), 337-351. | MR | Zbl
- - ,[7] A global method for relaxation, Arch. Ration. Mech. Anal. 145(1) (1998), 51-98. | MR | Zbl
- - ,[8] Integral representation results for functionals defined on , J. Math. Pures Appl.(9) 75(6) (1996), 595-626. | MR | Zbl
- ,[9] “Homogenization of multiple integrals”, Oxford Lecture Series in Mathematics and its Applications, 12, Clarendon Press, Oxford University Press, New York, 1998. | MR | Zbl
- ,[10] A relaxation approach to Hencky's plasticity, Appl. Math. Optim. 35 (1997), 45-68. | MR | Zbl
- - ,[11] Energy minimizing brittle crack propagation, J. Elasticity 52(3) (1998/99), 201-238. | MR | Zbl
,[12] “Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations”, Pitman Research Notes in Mathematics Ser. 207, Longman, Harlow, 1989. | MR | Zbl
,[13] Integral representation and relaxation of local functionals, Nonlinear Anal. 9(6) (1985), 515-532. | MR | Zbl
- ,[14] “An Introduction to -Convergence”, Birkhäuser, Boston, 1993. | MR | Zbl
,[15] Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal. 108 (1989), 195-218. | MR | Zbl
- - ,[16] Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46(8) (1998), 1319-1342. | MR | Zbl
- ,[17] Researches on the statics of masonry structures, Arch. Ration. Mech. Anal. 88 (1985), 359-392. | MR | Zbl
- ,[18] Sublinear functions of measures and variational integrals, Duke Math. J. 31 (1964), 159-178. | MR | Zbl
- ,[19] Weak convergence of completely additive vector functions on a set, Siberian Math. J. 9 (1968), 1039-1045. | Zbl
,[20] “Convex Analysis”, Princeton University Press, Princeton, 1970. | MR | Zbl
,[21] “Problèmes mathématiques en plasticité”, Gauthier-Villars, Paris, 1983. | Zbl
,[22] Functions of bounded deformation, Arch. Ration. Mech. Anal. 75 (1980), 7-21. | MR | Zbl
- ,