@article{ASNSP_2000_4_29_1_19_0, author = {Barroso, Ana Cristina and Fonseca, Irene and Toader, Rodica}, title = {A relaxation theorem in the space of functions of bounded deformation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {19--49}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 29}, number = {1}, year = {2000}, mrnumber = {1765537}, zbl = {0960.49014}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2000_4_29_1_19_0/} }
TY - JOUR AU - Barroso, Ana Cristina AU - Fonseca, Irene AU - Toader, Rodica TI - A relaxation theorem in the space of functions of bounded deformation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2000 SP - 19 EP - 49 VL - 29 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2000_4_29_1_19_0/ LA - en ID - ASNSP_2000_4_29_1_19_0 ER -
%0 Journal Article %A Barroso, Ana Cristina %A Fonseca, Irene %A Toader, Rodica %T A relaxation theorem in the space of functions of bounded deformation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2000 %P 19-49 %V 29 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2000_4_29_1_19_0/ %G en %F ASNSP_2000_4_29_1_19_0
Barroso, Ana Cristina; Fonseca, Irene; Toader, Rodica. A relaxation theorem in the space of functions of bounded deformation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 29 (2000) no. 1, pp. 19-49. http://www.numdam.org/item/ASNSP_2000_4_29_1_19_0/
[1] Fine properties of functions with bounded deformation, Arch. Rat. Mech. Anal. 139 (1997), 201-238. | MR | Zbl
- - ,[2] On the relaxation in B V (Ω; R m) of quasi-convex integrals, J. Funct. Anal. 109 (1992), 76-97. | Zbl
- ,[3] Functionals with linear growth defined on vector valued B V functions, J. Math. Pures et Appl. 70 (1991), 269-323. | MR | Zbl
- - ,[4] Relaxation of bulk and interfacial energies, Arch. Rat. Mech. Anal. 135 (1996), 107-173. | MR | Zbl
- - - ,[5] Special functions of bounded deformation, Math. Z. 228 (1998), 337-351. | MR | Zbl
- - ,[6] A relaxation approach to Hencky's plasticity, Appl. Math. Optimization 35 (1997), 45-68. | MR | Zbl
- - ,[7] A global method for relaxation, Arch. Rat. Mech. Anal. 145 (1998), 51-98. | MR | Zbl
- - ,[8] Direct Methods in the Calculus of Variations ", Springer, 1989. | MR | Zbl
, "[9] On lower semicontinuity of integral functionals in LD(Q), Ricerche Mat. (to appear). | MR | Zbl
,[10] Quasiconvex integrands and lower semicontinuity in L1, SIAM J. Math. Anal. 23 (1992), 1081-1098. | MR | Zbl
- ,[11] Relaxation of quasiconvex functionals in B V (Ω; Rp), Arch. Rat. Mech. Anal. 123 (1993), 1-49. | Zbl
- ,[12] A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal. 30 (1999), 1355-1390. | MR | Zbl
- ,[13] New Estimates for Deformations in Terms of Their Strains", Ph.D. Thesis, Princeton University, 1979.
, "[14] The Saddle Point of a Differential Program", Energy Methods in Finite Element Analysis, Wiley, New York, 1979. | MR
- - , "[15] Non-inequality for differential operators in the L1 -norm, Arch. Rat. Mech. Anal. 11 (1962), 40-49. | MR | Zbl
,[16] Weak convergence of completely additive vector functions on a set, Siberian Math. J. 9 (1968), 1039-1045 (translation of Sibirsk. Mat. Z. 9 (1968), 1386-1394). | MR | Zbl
,[17] Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci. Paris Sér. A 286 (1978), 1201-1204. | MR | Zbl
,[18] Un espace fonctionel pour les équations de la plasticité, Ann. Fac. Sci. Toulouse Math (6) 1 (1979), 77-87. | Numdam | MR | Zbl
,[19] Problèmes Mathématiques en Plasticité", Gauthier-Villars, 1983. | MR | Zbl
, "[20] Functions of bounded deformation, Arch. Rat. Mech. Anal. 75 (1980), 7-21. | MR | Zbl
- ,