@article{M2AN_1999__33_4_651_0, author = {Chambolle, Antonin and Dal Maso, Gianni}, title = {Discrete approximation of the {Mumford-Shah} functional in dimension two}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {651--672}, publisher = {EDP-Sciences}, volume = {33}, number = {4}, year = {1999}, mrnumber = {1726478}, zbl = {0943.49011}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_4_651_0/} }
TY - JOUR AU - Chambolle, Antonin AU - Dal Maso, Gianni TI - Discrete approximation of the Mumford-Shah functional in dimension two JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 651 EP - 672 VL - 33 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_4_651_0/ LA - en ID - M2AN_1999__33_4_651_0 ER -
%0 Journal Article %A Chambolle, Antonin %A Dal Maso, Gianni %T Discrete approximation of the Mumford-Shah functional in dimension two %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 651-672 %V 33 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_4_651_0/ %G en %F M2AN_1999__33_4_651_0
Chambolle, Antonin; Dal Maso, Gianni. Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 4, pp. 651-672. http://www.numdam.org/item/M2AN_1999__33_4_651_0/
[1] A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857-881. | MR | Zbl
,[2] Variational problems in SBV and image segmentation. Acta Appl. Math. 17 (1989) 1-40. | MR | Zbl
,[3] Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111 (1990) 291-322. | MR | Zbl
,[4] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR | Zbl
and ,[5] On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105-123. | MR | Zbl
and ,[6] Variational Convergence for Functions and Operators. Pitman, London (1984). | MR | Zbl
,[7] Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15 (1994) 201-224. | MR | Zbl
and ,[8] Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1-18. | MR | Zbl
, and ,[9] Implementation of an adaptive finite-elements approximation of the Mumford-Shah functional. Preprint LPMTM, Université Paris-Nord/CEREMADE, Université de Paris-Dauphine (1998); Numer. Math. (to appear). | MR | Zbl
and ,[10] Non-Local Approximation of the Mumford-Shah Functional. Calc. Var. Partial Differential Equations 5 (1997) 293-322. | MR | Zbl
and ,[11] Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. | MR | Zbl
,[12] Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.) (to appear). | MR | Zbl
,[13] An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). | MR | Zbl
,[14] Un nuovo funzionale del calcolo delie variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199-210. | MR | Zbl
and ,[15] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | MR | Zbl
and ,[16] An approximation result for the minimizers of Mumford-Shah functional. Boll. Un, Mat. Ital. A 11 (1997) 149-162. | MR | Zbl
and ,[17] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR | Zbl
and ,[18] Geometric Measure Theory. Springer-Verlag, New York (1969). | MR | Zbl
,[19] Capacity methods in the theory of partial differential equations. Jahresber. Deutsch. Math.-Verein. 84 (1982) 1-44. | MR | Zbl
,[20] Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1983). | MR | Zbl
,[21] Variational Models in Image Segmentation. Birkhäuser, Boston, (1995). | MR
and ,[22] Boundary detection by minimizing functionals, I, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco (1985).
and ,[23] Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR | Zbl
and ,[24] Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). | Zbl
and ,[25] Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | MR | Zbl
,