@article{ASNSP_1972_3_26_1_67_0, author = {Chadam, John M.}, title = {Asymptotics for $\square \, u = m^2 u + G (t, x, u, u_x, u_t),$, {II.} {Scattering} theory}, journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche}, pages = {67--95}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 26}, number = {1}, year = {1972}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1972_3_26_1_67_0/} }
TY - JOUR AU - Chadam, John M. TI - Asymptotics for $\square \, u = m^2 u + G (t, x, u, u_x, u_t),$, II. Scattering theory JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1972 SP - 67 EP - 95 VL - 26 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1972_3_26_1_67_0/ LA - en ID - ASNSP_1972_3_26_1_67_0 ER -
%0 Journal Article %A Chadam, John M. %T Asymptotics for $\square \, u = m^2 u + G (t, x, u, u_x, u_t),$, II. Scattering theory %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1972 %P 67-95 %V 26 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1972_3_26_1_67_0/ %G en %F ASNSP_1972_3_26_1_67_0
Chadam, John M. Asymptotics for $\square \, u = m^2 u + G (t, x, u, u_x, u_t),$, II. Scattering theory. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 26 (1972) no. 1, pp. 67-95. http://www.numdam.org/item/ASNSP_1972_3_26_1_67_0/
[1] Asymtotics for □u = m2u + G (x, t, u, u t, ux), I. Global l Existence and De-J. M. cay, Ann. Sc. Norm. summary in Bull. Amer. Math. Soc., 76, 1032-1035, (1970). | Zbl
,[2] Dispersion for Non-linear Relativistic Equations, II, Ann. Scient. Ec. Norm. Sup., ser. 4, 1, 459-497, (1968). | Numdam | MR | Zbl
,[3] Decay and Asympotics for □u = F (u), J. Functional Anal., 2, 409-457, (1968). | Zbl
,[4] Non-linear Semi-groups, Ann. Math., 78 389-364, (1963). | MR | Zbl
,[5] Functional Analysis, Springer, Berlin-Göttingen-Heidelberg, 1965. | Zbl
,[6] Outgoing Solutions of (- Δ + q - k2) u = f in an Exterior Domain, J. Math Anal. Applic, 31, 81-116, (1970). | Zbl
and ,