@article{ASENS_1968_4_1_4_459_0, author = {Segal, Irving}, title = {Dispersion for non-linear relativistic equations. {II}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {459--497}, publisher = {Elsevier}, volume = {Ser. 4, 1}, number = {4}, year = {1968}, doi = {10.24033/asens.1170}, mrnumber = {39 #5109}, zbl = {0179.42302}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1170/} }
TY - JOUR AU - Segal, Irving TI - Dispersion for non-linear relativistic equations. II JO - Annales scientifiques de l'École Normale Supérieure PY - 1968 SP - 459 EP - 497 VL - 1 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1170/ DO - 10.24033/asens.1170 LA - en ID - ASENS_1968_4_1_4_459_0 ER -
Segal, Irving. Dispersion for non-linear relativistic equations. II. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 1 (1968) no. 4, pp. 459-497. doi : 10.24033/asens.1170. http://www.numdam.org/articles/10.24033/asens.1170/
[1] Asymptotic decay of solutions to the relativistic wave equation..., Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1964.
,[2] Lebesgue spaces of differentiable functions and distributions (Proc. Symp. Pure Math., vol. IV, 1961, p. 33-49 ; Amer. Math. Soc., Providence). | MR | Zbl
,[3] The wave operator and Lp norms (J. Math. Mech., vol. 12, 1963, p. 55-63). | MR | Zbl
,[4] Asymptotic behavior of certain fundamental solutions to the Klein-Gordon equation, Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1966.
,[5] Quantization and dispersion for non-linear relativistic equations, p. 79-108 ; Proc. Conf. on Math. Theory of El. Particles, publ. M.I.T. Press, Cambridge, Mass., 1966. | MR
,[6] Differential operators in the manifold of solutions of a non-linear differential equation (J. Math. pures et appl., t. 44, 1965, p. 71-132). | MR | Zbl
,[7] The global Cauchy problem for a relativistic scalar field with power interaction (Bull. Soc. Math. Fr., t. 91, 1963, p. 129-135). | Numdam | MR | Zbl
,[8] Non-linear semi-groups (Ann. Math., vol. 78, 1963, p. 339-364). | MR | Zbl
,[9] La décroissance asymptotique des solutions des équations d'onde non linéaires (C. R. Acad. Sc., t. 256, 1963, p. 2749-2750) ; Les opérateurs d'onde pour les équations d'onde non linéaires indépendantes du temps (Ibid., t. 256, 1963, p. 5045-5046). | Zbl
,[10]
, To appear in J. Functional Analysis.[11] MR
and , Phys. Rev., vol. 96, 1954, p. 191. |Cité par Sources :