Cet article donne une courte preuve microlocale du prolongement méromorphe de la fonction zêta de Ruelle pour les flots d'Anosov lisses. Des résultats plus généraux ont été récemment obtenus par Giulietti-Liverani-Pollicott [13] mais notre approche est différente et se base sur l'étude du générateur du flot, que l'on considère comme un opérateur pseudodifférentiel semi-classique.
The purpose of this paper is to give a short microlocal proof of the meromorphic continuation of the Ruelle zeta function for Anosov flows. More general results have been recently proved by Giulietti-Liverani-Pollicott [13] but our approach is different and is based on the study of the generator of the flow as a semiclassical differential operator.
DOI : 10.24033/asens.2290
Keywords: Dynamical zeta functions, Anosov flows, Pollicott-Ruelle resonances.
Mot clés : Fonctions zêta dynamiques, flots d'Anosov, résonances de Pollicott-Ruelle.
@article{ASENS_2016__49_3_543_0, author = {Dyatlov, Semyon and Zworski, Maciej}, title = {Dynamical zeta functions for {Anosov} flows via microlocal analysis}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {543--577}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {3}, year = {2016}, doi = {10.24033/asens.2290}, zbl = {1369.37028}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2290/} }
TY - JOUR AU - Dyatlov, Semyon AU - Zworski, Maciej TI - Dynamical zeta functions for Anosov flows via microlocal analysis JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 543 EP - 577 VL - 49 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2290/ DO - 10.24033/asens.2290 LA - en ID - ASENS_2016__49_3_543_0 ER -
%0 Journal Article %A Dyatlov, Semyon %A Zworski, Maciej %T Dynamical zeta functions for Anosov flows via microlocal analysis %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 543-577 %V 49 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2290/ %R 10.24033/asens.2290 %G en %F ASENS_2016__49_3_543_0
Dyatlov, Semyon; Zworski, Maciej. Dynamical zeta functions for Anosov flows via microlocal analysis. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 543-577. doi : 10.24033/asens.2290. http://www.numdam.org/articles/10.24033/asens.2290/
, Algebraic and topological dynamics (Contemp. Math.), Volume 385, Amer. Math. Soc., Providence, RI, 2005, pp. 123-135 | DOI | MR | Zbl
Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), Volume 57 (2007), pp. 127-154 http://aif.cedram.org/item?id=AIF_2007__57_1_127_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Fractal Weyl laws for asymptotically hyperbolic manifolds, Geom. Funct. Anal., Volume 23 (2013), pp. 1145-1206 (ISSN: 1016-443X) | DOI | MR | Zbl
Sharp polynomial bounds on the number of Pollicott-Ruelle resonances, Ergodic Theory Dynam. Systems, Volume 34 (2014), pp. 1168-1183 (ISSN: 0143-3857) | DOI | MR | Zbl
Power spectrum of the geodesic flow on hyperbolic manifolds, Anal. PDE, Volume 8 (2015), pp. 923-1000 (ISSN: 2157-5045) | DOI | MR | Zbl
Pollicott-Ruelle resonances for open systems (preprint arXiv:1410.5516 )
On Carleman estimates for pseudo-differential operators, Invent. math., Volume 17 (1972), pp. 31-43 (ISSN: 0020-9910) | DOI | MR | Zbl
Stochastic stability of Pollicott-Ruelle resonances, Nonlinearity, Volume 28 (2015), pp. 3511-3533 (ISSN: 0951-7715) | DOI | MR | Zbl
Meromorphic zeta functions for analytic flows, Comm. Math. Phys., Volume 174 (1995), pp. 161-190 http://projecteuclid.org/euclid.cmp/1104275099 (ISSN: 0010-3616) | DOI | MR | Zbl
Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys., Volume 308 (2011), pp. 325-364 (ISSN: 0010-3616) | DOI | MR | Zbl
The semiclassical zeta function for geodesic flows on negatively curved manifolds (preprint arXiv:1311.4932 )
Band structure of the Ruelle spectrum of contact Anosov flows, C. R. Math. Acad. Sci. Paris, Volume 351 (2013), pp. 385-391 (ISSN: 1631-073X) | DOI | MR | Zbl
Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 189-217 (ISSN: 0143-3857) | DOI | MR | Zbl
Anosov flows and dynamical zeta functions, Ann. of Math., Volume 178 (2013), pp. 687-773 (ISSN: 0003-486X) | DOI | MR | Zbl
Invariant distributions and X-ray transform for Anosov flows (preprint arXiv:1408.4732 )
Lens rigidity for manifolds with hyperbolic trapped set (preprint arXiv:1412.1760 )
Lectures on spectral theory of elliptic operators, Duke Math. J., Volume 44 (1977), pp. 485-517 (ISSN: 0012-7094) | DOI | MR | Zbl
Scattering asymptotics for Riemann surfaces, Ann. of Math., Volume 145 (1997), pp. 597-660 (ISSN: 0003-486X) | DOI | MR | Zbl
The wave trace for Riemann surfaces, Geom. Funct. Anal., Volume 9 (1999), pp. 1156-1168 (ISSN: 1016-443X) | DOI | MR | Zbl
On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math., Volume 17 (1971), pp. 99-163 (ISSN: 0013-8584) | MR | Zbl
, Springer, 1983 | , Springer, 1985 |A local trace formula for Anosov flows (preprint arXiv:1411.6177, with an appendix by Frédéric Naud)
Periodic orbit spectrum in terms of Ruelle-Pollicott resonances, Phys. Rev. E, Volume 69 (2004), 026204 pages (ISSN: 1539-3755) | DOI | MR
Fredholm determinants, Anosov maps and Ruelle resonances, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 1203-1215 (ISSN: 1078-0947) | DOI | MR | Zbl
Scattering theory and the trace formula of the wave group, J. Funct. Anal., Volume 45 (1982), pp. 429-440 | DOI | Zbl
, Spectral and scattering theory (Sanda, 1992) (Lecture Notes in Pure and Appl. Math.), Volume 161, Dekker, New York, 1994, pp. 85-130 | MR | Zbl
On the rate of mixing of Axiom A flows, Invent. math., Volume 81 (1985), pp. 413-426 (ISSN: 0020-9910) | DOI | MR | Zbl
Zeta-functions for expanding maps and Anosov flows, Invent. math., Volume 34 (1976), pp. 231-242 (ISSN: 0020-9910) | DOI | MR | Zbl
Resonances of chaotic dynamical systems, Phys. Rev. Lett., Volume 56 (1986), pp. 405-407 (ISSN: 0031-9007) | DOI | MR
Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems, Ergodic Theory Dynam. Systems, Volume 16 (1996), pp. 805-819 (ISSN: 0143-3857) | DOI | MR | Zbl
Differentiable dynamical systems, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 747-817 (ISSN: 0002-9904) | DOI | MR | Zbl
Lower bounds on the number of scattering poles. II, J. Funct. Anal., Volume 123 (1994), pp. 336-367 (ISSN: 0022-1236) | DOI | MR | Zbl
Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable, Ann. Inst. Fourier (Grenoble), Volume 21 (1971), pp. 85-128 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. math., Volume 194 (2013), pp. 381-513 (ISSN: 0020-9910) | DOI | MR | Zbl
, Graduate Studies in Math., 138, Amer. Math. Soc., Providence, RI, 2012, 431 pages (ISBN: 978-0-8218-8320-4) | MR | Zbl
, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, École polytech., Palaiseau, 1997, 14 pages (exp. no 13) | Numdam | MR | Zbl
Cité par Sources :