[Résultats d'intégrabilité locale en analyse harmonique sur des groupes réductifs en grande caractéristique positive]
Soit un groupe algébrique réductif connexe au-dessus d'un corps local non archimédien , et soit son algèbre de Lie. D'après un théorème de Harish-Chandra, si est de caractéristique zéro, alors les transformés de Fourier d'intégrales orbitales sont représentés, sur l'ensemble des éléments réguliers de , par des fonctions localement constantes, qui, si on les étend par zéro à tout , sont localement intégrables. Dans ce papier, nous démontrons que ces fonctions sont en fait des spécialisations de fonctions motiviques constructibles exponentielles. En combinant ceci avec le principe de transfert d'intégrabilité de [8], nous obtenons que le théorème de Harish-Chandra est valable aussi quand est un corps local non archimédien de caractéristique positive suffisamment grande. Sous l'hypothèse que l'application exponentielle feinte existe, ceci implique aussi l'intégrabilité locale des caractères de Harish-Chandra de représentations admissibles de , où est un corps d'équicaractéristique suffisamment grande (en fonction de la donnée radicielle de ).
Let be a connected reductive algebraic group over a non-Archimedean local field , and let be its Lie algebra. By a theorem of Harish-Chandra, if has characteristic zero, the Fourier transforms of orbital integrals are represented on the set of regular elements in by locally constant functions, which, extended by zero to all of , are locally integrable. In this paper, we prove that these functions are in fact specializations of constructible motivic exponential functions. Combining this with the Transfer Principle for integrability of [8], we obtain that Harish-Chandra's theorem holds also when is a non-Archimedean local field of sufficiently large positive characteristic. Under the hypothesis that mock exponential map exists, this also implies local integrability of Harish-Chandra characters of admissible representations of , where is an equicharacteristic field of sufficiently large (depending on the root datum of ) characteristic.
DOI : 10.24033/asens.2236
Keywords: Harish-Chandra characters, orbital integrals, Fourier transform, local integrability, reductive group over a local field.
Mot clés : Caractères de Harish-Chandra, intégrales orbitales, transformés de Fourier, intégrabilité locale, groupes réductifs au-dessus d'un corps local.
@article{ASENS_2014__47_6_1163_0, author = {Cluckers, Raf and Gordon, Julia and Halupczok, Immanuel}, title = {Local integrability results in harmonic analysis on reductive groups in large positive characteristic}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1163--1195}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {6}, year = {2014}, doi = {10.24033/asens.2236}, mrnumber = {3297157}, zbl = {1315.22010}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2236/} }
TY - JOUR AU - Cluckers, Raf AU - Gordon, Julia AU - Halupczok, Immanuel TI - Local integrability results in harmonic analysis on reductive groups in large positive characteristic JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 1163 EP - 1195 VL - 47 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2236/ DO - 10.24033/asens.2236 LA - en ID - ASENS_2014__47_6_1163_0 ER -
%0 Journal Article %A Cluckers, Raf %A Gordon, Julia %A Halupczok, Immanuel %T Local integrability results in harmonic analysis on reductive groups in large positive characteristic %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 1163-1195 %V 47 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2236/ %R 10.24033/asens.2236 %G en %F ASENS_2014__47_6_1163_0
Cluckers, Raf; Gordon, Julia; Halupczok, Immanuel. Local integrability results in harmonic analysis on reductive groups in large positive characteristic. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1163-1195. doi : 10.24033/asens.2236. http://www.numdam.org/articles/10.24033/asens.2236/
Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive -adic group, Michigan Math. J., Volume 50 (2002), pp. 263-286 (ISSN: 0026-2285) | DOI | MR | Zbl
Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups, J. reine angew. Math., Volume 575 (2004), pp. 1-35 (ISSN: 0075-4102) | DOI | MR | Zbl
The local character expansion near a tame, semisimple element, Amer. J. Math., Volume 129 (2007), pp. 381-403 | DOI | MR | Zbl
An intertwining result for -adic groups, Canad. J. Math., Volume 52 (2000), pp. 449-467 (ISSN: 0008-414X) | DOI | MR | Zbl
, Hermann, 1967 (; réimpression Springer, 2007) |On the computability of some positive-depth supercuspidal characters near the identity, Represent. Theory, Volume 15 (2011), pp. 531-567 | DOI | MR | Zbl
Integrability of oscillatory functions on local fields: transfer principles (preprint arXiv:1111.4405 ) | MR | Zbl
Transfer principle for the Fundamental Lemma, On the Stabilization of the Trace Formula (Clozel, L.; Harris, M.; Labesse, J.-P.; Ngô, B.-C., eds.), International Press of Boston (2011) | MR
Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero (to appear in J. reine angew. Math ) | MR
Ax-Kochen-Eršov theorems for -adic integrals and motivic integration, Geometric methods in algebra and number theory (Progr. Math.), Volume 235, Birkhäuser (2005), pp. 109-137 | DOI | MR | Zbl
Constructible motivic functions and motivic integration, Invent. Math., Volume 173 (2008), pp. 23-121 | DOI | MR | Zbl
Constructible exponential functions, motivic Fourier transform and transfer principle, Ann. of Math., Volume 171 (2010), pp. 1011-1065 | DOI | MR | Zbl
Characters of nonconnected, reductive -adic groups, Canad. J. Math., Volume 39 (1987), pp. 149-167 (ISSN: 0008-414X) | DOI | MR | Zbl
Homogeneity results for invariant distributions of a reductive -adic group, Ann. Sci. École Norm. Sup., Volume 35 (2002), pp. 391-422 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of Math., Volume 156 (2002), pp. 295-332 (ISSN: 0003-486X) | DOI | MR | Zbl
Lectures on harmonic analysis for reductive -adic groups, Representations of real and -adic groups (Tan, E.-C.; Zhu, C.-B., eds.) (Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore), Volume 2, Singapore Univ. Press (2004), pp. 47-94 | DOI | MR | Zbl
Nilpotent conjugacy classes of reductive -adic Lie algebras and definability in Pas's language (2006) | MR
Definable sets, motives and -adic integrals, J. Amer. Math. Soc, Volume 14 (2001), pp. 429-469 | DOI | MR | Zbl
Virtual transfer factors, Represent. Theory, Volume 7 (2003), pp. 81-100 | DOI | MR | Zbl
On the motive of a reductive group, Invent. Math., Volume 130 (1997), pp. 287-313 | DOI | MR | Zbl
, Ottawa lectures on Admissible Representations of reductive -adic groups (Fields Institute Monograph series), Volume 26, Amer. Math. Soc., Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2009, pp. 113-150 | MR | Zbl
Can -adic integrals be computed?, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press (2004), pp. 313-329 | MR | Zbl
, Springer, 1970 |A submersion principle and its applications, Geometry and analysis (Proc. Indian Acad. Sci. (Math. Sci.)), Volume 90, Indian Academy of Sciences (1981), pp. 95-102 | MR | Zbl
, University Lecture Series, 16, Amer. Math. Soc., 1999, 97 pages (ISBN: 0-8218-2025-7) | MR | Zbl
The Fourier transform and germs of characters (case of over a -adic field), Math. Ann., Volume 208 (1974), pp. 305-322 (ISSN: 0025-5831) | DOI | MR | Zbl
, Harmonic analysis, the trace formula, and Shimura varieties (Clay Math. Proc.), Volume 4, Amer. Math. Soc., 2005, pp. 393-522 | MR | Zbl
, Cambridge studies in advanced math., 41, 1996 | MR
Intégrabilité locale des caractères tordus de , J. reine angew. Math., Volume 566 (2004), pp. 1-39 | DOI | MR | Zbl
Intégrabilité locale des caractères de , Pacific J. Math., Volume 222 (2005), pp. 69-131 | DOI | MR | Zbl
Intégrabilité locale des caractères-distributions de où est un corps local non-archimédien de caractéristique quelconque, Compositio Math., Volume 100 (1996), pp. 41-75 | Numdam | MR | Zbl
Nilpotent orbits over ground fields of good characteristic, Math. Ann., Volume 329 (2004), pp. 49-85 | DOI | MR | Zbl
Unrefined minimal -types for -adic groups, Invent. Math., Volume 116 (1994), pp. 393-408 (ISSN: 0020-9910) | DOI | MR | Zbl
Orbital integrals in reductive groups, Ann. of Math., Volume 96 (1972), pp. 505-510 (ISSN: 0003-486X) | DOI | MR | Zbl
Intégrabilité locale des caractères du groupe où est un corps local de caractéristique positive, Duke Math. J., Volume 52 (1985), pp. 771-792 (ISSN: 0012-7094) | DOI | MR | Zbl
, Progress in Math., 9, Birkhäuser, 1998 (ISBN: 0-8176-4021-5) | MR | Zbl
Sato-Tate theorem for families and low-lying zeroes of automorphic -functions, with appendices by R. Kottwitz and J. Gordon, R. Cluckers and I. Halupczok (preprint arXiv:1208.1945 ) | MR
Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu, Volume 5 (2006), pp. 423-525 | DOI | MR | Zbl
Endoscopie et changement de caractéristique: intégrales orbitales pondérées, Ann. Inst. Fourier, Volume 59 (2009), pp. 1753-1818 | DOI | Numdam | MR | Zbl
Cité par Sources :