[Métriques à singularités coniques le long de diviseurs à croisements normaux et champs de tenseurs holomorphes]
Dans cet article, nous prouvons l'existence de métriques de Kähler-Einstein à courbure négative ayant des singularités coniques le long d'un diviseur à croisements normaux simples sur une variété kählérienne compacte, sous une hypothèse technique sur les angles des cones. Nous discutons également du cas des métriques de Kähler-Einstein à courbure strictement positive avec des singularités coniques. Nous en déduisons que les résultats classiques de Lichnerowicz et Kobayashi sur le parallélisme et l'annulation des champs de tenseurs holomorphes s'étendent à notre cadre.
We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields.
Keywords: kähler-Einstein metrics, cone singularities, orbifold tensors, Monge-ampère equations
Mot clés : métriques de kähler-Einstein, singularités coniques, tenseurs orbifoldes, équation de Monge-ampère
@article{ASENS_2013_4_46_6_879_0, author = {Campana, Fr\'ed\'eric and Guenancia, Henri and P\u{a}un, Mihai}, title = {Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {879--916}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {6}, year = {2013}, doi = {10.24033/asens.2205}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2205/} }
TY - JOUR AU - Campana, Frédéric AU - Guenancia, Henri AU - Păun, Mihai TI - Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 879 EP - 916 VL - 46 IS - 6 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2205/ DO - 10.24033/asens.2205 LA - en ID - ASENS_2013_4_46_6_879_0 ER -
%0 Journal Article %A Campana, Frédéric %A Guenancia, Henri %A Păun, Mihai %T Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 879-916 %V 46 %N 6 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2205/ %R 10.24033/asens.2205 %G en %F ASENS_2013_4_46_6_879_0
Campana, Frédéric; Guenancia, Henri; Păun, Mihai. Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 6, pp. 879-916. doi : 10.24033/asens.2205. http://www.numdam.org/articles/10.24033/asens.2205/
[1] Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sc. Math. 102 (1978). | MR
,[2] Ricci flat Kähler metrics on affine algebraic manifolds, Math. Ann. 287 (1990), 175-180. | MR
& ,[3] A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, preprint arXiv:1011.3976.
,[4] Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, preprint arXiv:1111.7158.
, , , & ,[5] -extension of -closed forms, preprint arXiv:1104.4620.
,[6] The Calabi-Yau Theorem, Lecture Notes in Math. 2038 (2012), 201-227. | MR
,[7] Curvature and Betti numbers, Annals of Math. Studies 32, Princeton Univ. Press, 1953. | MR
& ,[8] Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), 199-262. | MR
, , & ,[9] Ricci flat Kähler metrics with edge singularities, preprint arXiv:1103.5454.
,[10] Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu 10 (2011), 809-934. | MR | Zbl
,[11] Special orbifolds and birational classification: a survey, in Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 123-170. | MR | Zbl
,[12] -reduction for smooth orbifolds, Manuscripta Math. 127 (2008), 521-532. | MR | Zbl
,[13] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proceedings of the Symposia in Pure Math. 62.2 (1995). | MR | Zbl
,[14] Kähler manifolds with numerically effective Ricci class, Comp. Math. 89 (1993), 217-240. | EuDML | Numdam | MR | Zbl
, & ,[15] Kähler metrics with cone singularities along a divisor, in Essays in mathematics and its applications (P. M. Pardalos & T. M. Rassias, éds.), Springer, 2012, 49-79. | MR | Zbl
,[16] Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607-639. | MR | Zbl
, & ,[17] Elliptic partial differential equations of second order, Springer, 1977. | MR | Zbl
& ,[18] The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442-482. | MR | Zbl
& ,[19] Uniqueness of Kähler-Einstein cone metrics, Publ. Mat. 44 44 (2000), 437-448. | EuDML | MR | Zbl
,[20] Kähler-Einstein metrics with edge singularities, preprint arXiv:1105.5216, with an appendix by C. Li and Y. Rubinstein.
, & ,[21] Kähler-Einstein metric on an open algebraic manifolds, Osaka 1. Math. 21 (1984), 399-418. | MR | Zbl
,[22] The first Chern class and holomorphic tensor fields, Nagoya Math. 77 (1980), 5-11. | MR | Zbl
,[23] Recent results in complex differential geometry, Jber. Math.-Verein. 83 (1981), 147-158. | MR | Zbl
,[24] The complex Monge-Ampère operator, Acta Math. 180 (1998), 69-117. | Zbl
,[25] Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in : the case of compact Kähler manifolds, Math. Ann. 342 (2008), 379-386. | MR | Zbl
,[26] Variétés kählériennes et première classe de Chern, J. Diff. Geom. 1 (1967). | MR | Zbl
,[27] Variétés kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative, J. Diff. Geom. 6 (1971). | MR | Zbl
,[28] Kähler-Einstein metrics singular along a smooth divisor, Journées « Équations aux dérivées partielles » (Saint Jean-de-Mont, 1999) (1999). | EuDML | MR | Zbl
,[29] Regularity properties of the degenerate Monge-Ampère equations on compact Kähler manifolds, Chin. Ann. Math., Ser. B 29 (2008), 623-630. | MR | Zbl
,[30] Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, Birkhäuser, 1987. | MR | Zbl
,[31] Canonical measures and Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), 303-353. | MR | Zbl
& ,[32] Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Adv. Ser. Math. Phys. 1 1 (1987), 574-628. | MR | Zbl
& ,[33] Limits of Calabi-Yau metrics when the Kähler class degenerates, JEMS 11 (2009), 755-776. | EuDML | MR | Zbl
,[34] Adiabatic limits of Ricci-flat Kähler metrics, J. Diff. Geom. 84 (2010), 427-453. | MR | Zbl
,[35] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978). | MR | Zbl
,[36] On degenerate Monge-Ampère equations over closed Kähler manifolds, Int. Math. Res. Let. (2006). | MR | Zbl
,Cité par Sources :