Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields
[Métriques à singularités coniques le long de diviseurs à croisements normaux et champs de tenseurs holomorphes]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 6, pp. 879-916.

Dans cet article, nous prouvons l'existence de métriques de Kähler-Einstein à courbure négative ayant des singularités coniques le long d'un diviseur à croisements normaux simples sur une variété kählérienne compacte, sous une hypothèse technique sur les angles des cones. Nous discutons également du cas des métriques de Kähler-Einstein à courbure strictement positive avec des singularités coniques. Nous en déduisons que les résultats classiques de Lichnerowicz et Kobayashi sur le parallélisme et l'annulation des champs de tenseurs holomorphes s'étendent à notre cadre.

We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields.

DOI : 10.24033/asens.2205
Classification : 32Q05, 32Q10, 32Q15, 32Q20, 32U05, 32U15
Keywords: kähler-Einstein metrics, cone singularities, orbifold tensors, Monge-ampère equations
Mot clés : métriques de kähler-Einstein, singularités coniques, tenseurs orbifoldes, équation de Monge-ampère
@article{ASENS_2013_4_46_6_879_0,
     author = {Campana, Fr\'ed\'eric and Guenancia, Henri and P\u{a}un, Mihai},
     title = {Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {879--916},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 46},
     number = {6},
     year = {2013},
     doi = {10.24033/asens.2205},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2205/}
}
TY  - JOUR
AU  - Campana, Frédéric
AU  - Guenancia, Henri
AU  - Păun, Mihai
TI  - Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2013
SP  - 879
EP  - 916
VL  - 46
IS  - 6
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/asens.2205/
DO  - 10.24033/asens.2205
LA  - en
ID  - ASENS_2013_4_46_6_879_0
ER  - 
%0 Journal Article
%A Campana, Frédéric
%A Guenancia, Henri
%A Păun, Mihai
%T Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields
%J Annales scientifiques de l'École Normale Supérieure
%D 2013
%P 879-916
%V 46
%N 6
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2205/
%R 10.24033/asens.2205
%G en
%F ASENS_2013_4_46_6_879_0
Campana, Frédéric; Guenancia, Henri; Păun, Mihai. Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 6, pp. 879-916. doi : 10.24033/asens.2205. https://www.numdam.org/articles/10.24033/asens.2205/

[1] T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sc. Math. 102 (1978). | MR

[2] S. Bando & R. Kobayashi, Ricci flat Kähler metrics on affine algebraic manifolds, Math. Ann. 287 (1990), 175-180. | MR

[3] R. Berman, A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, preprint arXiv:1011.3976.

[4] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj & A. Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, preprint arXiv:1111.7158.

[5] B. Berndtsson, L2-extension of ¯-closed forms, preprint arXiv:1104.4620.

[6] Z. Błocki, The Calabi-Yau Theorem, Lecture Notes in Math. 2038 (2012), 201-227. | MR

[7] S. Bochner & K. Yano, Curvature and Betti numbers, Annals of Math. Studies 32, Princeton Univ. Press, 1953. | MR

[8] S. Boucksom, P. Eyssidieux, V. Guedj & A. Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), 199-262. | MR

[9] S. Brendle, Ricci flat Kähler metrics with edge singularities, preprint arXiv:1103.5454.

[10] F. Campana, Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu 10 (2011), 809-934. | MR | Zbl

[11] F. Campana, Special orbifolds and birational classification: a survey, in Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 123-170. | MR | Zbl

[12] B. Claudon, Γ-reduction for smooth orbifolds, Manuscripta Math. 127 (2008), 521-532. | MR | Zbl

[13] J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proceedings of the Symposia in Pure Math. 62.2 (1995). | MR | Zbl

[14] J.-P. Demailly, T. Peternell & M. Schneider, Kähler manifolds with numerically effective Ricci class, Comp. Math. 89 (1993), 217-240. | EuDML | Numdam | MR | Zbl

[15] S. K. Donaldson, Kähler metrics with cone singularities along a divisor, in Essays in mathematics and its applications (P. M. Pardalos & T. M. Rassias, éds.), Springer, 2012, 49-79. | MR | Zbl

[16] P. Eyssidieux, V. Guedj & A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607-639. | MR | Zbl

[17] D. Gilbarg & N. Trudinger, Elliptic partial differential equations of second order, Springer, 1977. | MR | Zbl

[18] V. Guedj & A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442-482. | MR | Zbl

[19] T. Jeffres, Uniqueness of Kähler-Einstein cone metrics, Publ. Mat. 44 44 (2000), 437-448. | EuDML | MR | Zbl

[20] T. Jeffres, R. Mazzeo & Y. Rubinstein, Kähler-Einstein metrics with edge singularities, preprint arXiv:1105.5216, with an appendix by C. Li and Y. Rubinstein.

[21] R. Kobayashi, Kähler-Einstein metric on an open algebraic manifolds, Osaka 1. Math. 21 (1984), 399-418. | MR | Zbl

[22] S. Kobayashi, The first Chern class and holomorphic tensor fields, Nagoya Math. 77 (1980), 5-11. | MR | Zbl

[23] S. Kobayashi, Recent results in complex differential geometry, Jber. Math.-Verein. 83 (1981), 147-158. | MR | Zbl

[24] S. Kołodziej, The complex Monge-Ampère operator, Acta Math. 180 (1998), 69-117. | Zbl

[25] S. Kołodziej, Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in Lp: the case of compact Kähler manifolds, Math. Ann. 342 (2008), 379-386. | MR | Zbl

[26] A. Lichnerowicz, Variétés kählériennes et première classe de Chern, J. Diff. Geom. 1 (1967). | MR | Zbl

[27] A. Lichnerowicz, Variétés kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative, J. Diff. Geom. 6 (1971). | MR | Zbl

[28] R. Mazzeo, Kähler-Einstein metrics singular along a smooth divisor, Journées « Équations aux dérivées partielles » (Saint Jean-de-Mont, 1999) (1999). | EuDML | MR | Zbl

[29] M. Păun, Regularity properties of the degenerate Monge-Ampère equations on compact Kähler manifolds, Chin. Ann. Math., Ser. B 29 (2008), 623-630. | MR | Zbl

[30] Y.-T. Siu, Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, Birkhäuser, 1987. | MR | Zbl

[31] J. Song & G. Tian, Canonical measures and Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), 303-353. | MR | Zbl

[32] G. Tian & S.-T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Adv. Ser. Math. Phys. 1 1 (1987), 574-628. | MR | Zbl

[33] V. Tosatti, Limits of Calabi-Yau metrics when the Kähler class degenerates, JEMS 11 (2009), 755-776. | EuDML | MR | Zbl

[34] V. Tosatti, Adiabatic limits of Ricci-flat Kähler metrics, J. Diff. Geom. 84 (2010), 427-453. | MR | Zbl

[35] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978). | MR | Zbl

[36] Z. Zhang, On degenerate Monge-Ampère equations over closed Kähler manifolds, Int. Math. Res. Let. (2006). | MR | Zbl

  • Guedj, Vincent; Guenancia, Henri; Zeriahi, Ahmed Diameter of Kähler currents, Journal für die reine und angewandte Mathematik (Crelles Journal) (2025) | DOI:10.1515/crelle-2024-0092
  • Jin, Xishen; Liu, Jiawei The twisted conical Kähler-Ricci solitons on Fano manifolds, Science China Mathematics, Volume 67 (2024) no. 5, p. 1085 | DOI:10.1007/s11425-022-2125-3
  • Deruelle, Alix; Di Nezza, Eleonora Uniform estimates for cscK metrics, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 31 (2022) no. 3, p. 975 | DOI:10.5802/afst.1710
  • Pan, Chung-Ming Singular Gauduchon metrics, Compositio Mathematica, Volume 158 (2022) no. 6, p. 1314 | DOI:10.1112/s0010437x22007618
  • Guenancia, Henri Quasiprojective manifolds with negative holomorphic sectional curvature, Duke Mathematical Journal, Volume 171 (2022) no. 2 | DOI:10.1215/00127094-2021-0041
  • Guenancia, Henri; Taji, Behrouz Orbifold stability and Miyaoka–Yau inequality for minimal pairs, Geometry Topology, Volume 26 (2022) no. 4, p. 1435 | DOI:10.2140/gt.2022.26.1435
  • Biquard, Olivier; Guenancia, Henri Degenerating Kähler–Einstein cones, locally symmetric cusps, and the Tian–Yau metric, Inventiones mathematicae, Volume 230 (2022) no. 3, p. 1101 | DOI:10.1007/s00222-022-01138-5
  • de Borbon, Martin; Edwards, Gregory Calabi‐Yau metrics with cone singularities along intersecting complex lines: The unstable case, Journal of the London Mathematical Society, Volume 105 (2022) no. 4, p. 2167 | DOI:10.1112/jlms.12558
  • Huang, Liding; Zhou, Bin The Green’s function for equations with conic metrics, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 6 | DOI:10.1007/s00526-021-02103-5
  • Liu, Jiawei; Zhang, Xi Stability of the conical Kähler-Ricci flows on Fano manifolds, Communications in Partial Differential Equations, Volume 46 (2021) no. 6, p. 953 | DOI:10.1080/03605302.2020.1857403
  • Cao, Junyan; Guenancia, Henri; Păun, Mihai Variation of singular Kähler–Einstein metrics: Positive Kodaira dimension, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 779, p. 1 | DOI:10.1515/crelle-2021-0028
  • Li, Chi On the stability of extensions of tangent sheaves on Kähler–Einstein Fano/Calabi–Yau pairs, Mathematische Annalen, Volume 381 (2021) no. 3-4, p. 1943 | DOI:10.1007/s00208-020-02099-x
  • Fang, Hanlong; Fu, Xin On the construction of a complete Kähler-Einstein metric with negative scalar curvature near an isolated log-canonical singularity, Proceedings of the American Mathematical Society, Volume 149 (2021) no. 9, p. 3965 | DOI:10.1090/proc/15474
  • Zhang, Pan The Modified Cusp Kähler–Ricci Flow and Soliton, The Journal of Geometric Analysis, Volume 31 (2021) no. 10, p. 10402 | DOI:10.1007/s12220-021-00650-z
  • Di Nezza, Eleonora; Lu, Chinh H. Lp Metric Geometry of Big and Nef Cohomology Classes, Acta Mathematica Vietnamica, Volume 45 (2020) no. 1, p. 53 | DOI:10.1007/s40306-019-00343-4
  • Guenancia, Henri Kähler–Einstein metrics: From cones to cusps, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 759, p. 1 | DOI:10.1515/crelle-2018-0001
  • Shen, Liangming Maximal time existence of unnormalized conical Kähler–Ricci flow, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 760, p. 169 | DOI:10.1515/crelle-2018-0007
  • Guenancia, Henri Families of conic Kähler–Einstein metrics, Mathematische Annalen, Volume 376 (2020) no. 1-2, p. 1 | DOI:10.1007/s00208-018-1769-6
  • Zhang, Yashan On a twisted conical Kähler–Ricci flow, Annals of Global Analysis and Geometry, Volume 55 (2019) no. 1, p. 69 | DOI:10.1007/s10455-018-9619-z
  • Greb, Daniel; Guenancia, Henri; Kebekus, Stefan Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geometry Topology, Volume 23 (2019) no. 4, p. 2051 | DOI:10.2140/gt.2019.23.2051
  • Berman, Robert J.; Boucksom, Sebastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 751, p. 27 | DOI:10.1515/crelle-2016-0033
  • Edwards, Gregory Metric contraction of the cone divisor by the conical Kähler–Ricci Flow, Mathematische Annalen, Volume 374 (2019) no. 3-4, p. 1525 | DOI:10.1007/s00208-018-1701-0
  • Aleyasin, S. Ali; Chen, Xiu-Xiong Geodesics in the space of singular Kähler potentials, Mathematische Annalen, Volume 375 (2019) no. 3-4, p. 1079 | DOI:10.1007/s00208-019-01846-z
  • ZHANG, Yashan A note on conical Kähler-Ricci flow on minimal elliptic Kähler surfaces, Acta Mathematica Scientia, Volume 38 (2018) no. 1, p. 169 | DOI:10.1016/s0252-9602(17)30124-8
  • Datar, Ved; Guo, Bin; Song, Jian; Wang, Xiaowei Connecting toric manifolds by conical Kähler–Einstein metrics, Advances in Mathematics, Volume 323 (2018), p. 38 | DOI:10.1016/j.aim.2017.10.035
  • Shen, Liangming The C2,α C 2 , α -estimate for conical Kähler–Ricci flow, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 2 | DOI:10.1007/s00526-018-1308-z
  • Nomura, Ryosuke Blow-up rate of the scalar curvature along the conical Kähler–Ricci flow with finite time singularities, Differential Geometry and its Applications, Volume 58 (2018), p. 1 | DOI:10.1016/j.difgeo.2017.12.001
  • Chen, Xiuxiong; Wang, Yuanqi On the long time behaviour of the conical Kähler–Ricci flows, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 744, p. 165 | DOI:10.1515/crelle-2015-0103
  • Lin, Aijin; Shen, Liangming Conic Kähler–Einstein metrics along simple normal crossing divisors on Fano manifolds, Journal of Functional Analysis, Volume 275 (2018) no. 2, p. 300 | DOI:10.1016/j.jfa.2018.01.007
  • Edwards, Gregory A Scalar Curvature Bound Along the Conical Kähler–Ricci Flow, The Journal of Geometric Analysis, Volume 28 (2018) no. 1, p. 225 | DOI:10.1007/s12220-017-9817-0
  • Li, Yan Bounding Diameter of Conical Kähler Metric, The Journal of Geometric Analysis, Volume 28 (2018) no. 2, p. 950 | DOI:10.1007/s12220-017-9850-z
  • Di Nezza, Eleonora; Lu, Chinh H. Uniqueness and short time regularity of the weak Kähler–Ricci flow, Advances in Mathematics, Volume 305 (2017), p. 953 | DOI:10.1016/j.aim.2016.10.011
  • Liu, Jiawei; Zhang, Xi Conical Kähler–Ricci flows on Fano manifolds, Advances in Mathematics, Volume 307 (2017), p. 1324 | DOI:10.1016/j.aim.2016.12.002
  • Catanese, Fabrizio Kodaira fibrations and beyond: methods for moduli theory, Japanese Journal of Mathematics, Volume 12 (2017) no. 2, p. 91 | DOI:10.1007/s11537-017-1569-x
  • Di Nezza, Eleonora; Lu, Chinh H. Complex Monge–Ampère equations on quasi-projective varieties, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2017 (2017) no. 727, p. 145 | DOI:10.1515/crelle-2014-0090
  • Jeffres, Thalia; Mazzeo, Rafe; Rubinstein, Yanir Kähler–Einstein metrics with edge singularities, Annals of Mathematics (2016), p. 95 | DOI:10.4007/annals.2016.183.1.3
  • Campana, Frédéric; Păun, Mihai Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds, Compositio Mathematica, Volume 152 (2016) no. 11, p. 2350 | DOI:10.1112/s0010437x16007442
  • Spotti, Cristiano; Sun, Song; Yao, Chengjian Existence and deformations of Kähler–Einstein metrics on smoothable Q-Fano varieties, Duke Mathematical Journal, Volume 165 (2016) no. 16 | DOI:10.1215/00127094-3645330
  • Guenancia, Henri Kähler–Einstein Metrics with Conic Singularities Along Self-Intersecting Divisors, International Mathematics Research Notices, Volume 2016 (2016) no. 15, p. 4634 | DOI:10.1093/imrn/rnv290
  • Berman, Robert J. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, Inventiones mathematicae, Volume 203 (2016) no. 3, p. 973 | DOI:10.1007/s00222-015-0607-7
  • Keller, Julien About canonical Kähler metrics on Mumford semistable projective bundles over a curve, Journal of the London Mathematical Society, Volume 93 (2016) no. 1, p. 159 | DOI:10.1112/jlms/jdv066
  • Yao, Chengjian The Continuity Method to Deform Cone Angle, The Journal of Geometric Analysis, Volume 26 (2016) no. 2, p. 1155 | DOI:10.1007/s12220-015-9586-6
  • Datar, Ved V.; Song, Jian A remark on Kähler metrics with conical singularities along a simple normal crossing divisor, Bulletin of the London Mathematical Society (2015), p. bdv077 | DOI:10.1112/blms/bdv077
  • Chen, Xiuxiong; Wang, Yuanqi Bessel functions, heat kernel and the conical Kähler–Ricci flow, Journal of Functional Analysis, Volume 269 (2015) no. 2, p. 551 | DOI:10.1016/j.jfa.2015.01.015
  • DI CERBO, GABRIELE; DI CERBO, LUCA F. Positivity in Kähler–Einstein theory, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 159 (2015) no. 2, p. 321 | DOI:10.1017/s0305004115000377
  • Berman, Robert J.; Guenancia, Henri Kähler–Einstein Metrics on Stable Varieties and log Canonical Pairs, Geometric and Functional Analysis, Volume 24 (2014) no. 6, p. 1683 | DOI:10.1007/s00039-014-0301-8
  • Di Cerbo, Luca Fabrizio On Kähler–Einstein surfaces with edge singularities, Journal of Geometry and Physics, Volume 86 (2014), p. 414 | DOI:10.1016/j.geomphys.2014.09.009

Cité par 47 documents. Sources : Crossref