@article{ASENS_1988_4_21_2_193_0, author = {Lesfari, A.}, title = {Abelian surfaces and {Kowalewski's} top}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {193--223}, publisher = {Elsevier}, volume = {Ser. 4, 21}, number = {2}, year = {1988}, doi = {10.24033/asens.1556}, mrnumber = {89k:58125}, zbl = {0667.58019}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.1556/} }
TY - JOUR AU - Lesfari, A. TI - Abelian surfaces and Kowalewski's top JO - Annales scientifiques de l'École Normale Supérieure PY - 1988 SP - 193 EP - 223 VL - 21 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1556/ DO - 10.24033/asens.1556 LA - en ID - ASENS_1988_4_21_2_193_0 ER -
Lesfari, A. Abelian surfaces and Kowalewski's top. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 21 (1988) no. 2, pp. 193-223. doi : 10.24033/asens.1556. https://www.numdam.org/articles/10.24033/asens.1556/
[1] Completely Integrable Systems, Euclidean Lie Algebras and Curves (Adv. Math., Vol. 38, 1980, pp. 267-317). | MR | Zbl
and ,[2] Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory (Adv. Math., Vol. 38, 1980, pp. 318-379). | MR | Zbl
and ,[3] Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras and Regularization (Comm. Math. Phys., Vol. 83, 1982, pp. 83-106). | MR | Zbl
and ,[4] The Algebraic Integrability of Geodesic Flow on SO (4) (Invent. Math., Vol. 67, 1982, pp. 297-331 with an appendix by D. Mumford). | MR | Zbl
and ,[5] A Systematic Approach Towards Solving Integrable Systems (to appear).
and ,[6] Intersection of Quadrics and Geodesic Flow on SO (4) (to appear).
and ,[7] A Classification of Integrable Geodesic Flows on SO (4) (to appear).
and ,[8] Mathematical Methods of Classical Mechanics, Springer, Berlin, Heidelberg, New York, 1978. | MR | Zbl
,[9] Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. | MR | Zbl
and ,[10] Geodesic Flow on SO (4) and Abelian Surfaces (Math. Ann., Vol. 263, 1983, pp. 435-472). | MR | Zbl
,[11] The Algenraic Complete Integrability of Geodesic Flow on SO (n) (Comm. Math. Phys., Vol. 94, 1984, pp. 271-287). | MR | Zbl
,[12] Traité des fonctions elliptiques et de leurs applications, Gauthier-Villars, Paris, 1888. | JFM
,[13] Ordinary Differential Equations in the Complex Domain, Wiley-Interscience, New York, 1976. | Zbl
,[14] Ueber eine eigenschaft der differentialgleichungen der rotation eines schweren körpers um einen festen punkt im falle von frau S. Kowalewski (Math. Ann., Vol. 56, 1903, pp. 265-272). | JFM
,[15] Sur le cas traité par Kowalewski de rotation d'un corps solide pesant autour d'un point fixe (Acta Math., Vol. 17, 1892, pp. 209-263). | JFM
,[16] Sur le problème de la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 12, 1889, pp. 177-232). | JFM
,[17] Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 14, 1890, pp. 81-93). | JFM
,[18] Une approche systématique à la résolution du corps solide de Kowalewski (C. R. Acad. Sci. Paris, T. 302, série I, 1986, pp. 347-350). | MR | Zbl
,[19] Le corps solide de Kowalewski et les variétés Abéliennes (Thèse de doctorat en sciences, Université de Louvain, Louvain-la-Neuve, Belgique, décembre 1985).
,[20] Abelian Varieties, Oxford University press, Bombay-Oxford, 1974.
,[21] Algebraic Complete Integrability of Hamiltonian Systems and Kac-Moody Lie Algebras (Proc. Int. Congress of Math., Warszawa, August 1893. | Zbl
,[22] The Royak Society Lecture on Algebraic Methods in Hamiltonian Mechanics (Proc. of the Royal Society, London, November 1, 1984).
,[23] Euler and the Jacobians of Elliptic Curves (Progress in Math., Vol. 36, pp. 353-359, Birkhöuser Boston, Inc., 1983). | MR | Zbl
,- Riemann-Roch theorem and Kodaira-Serre duality, Annals of West University of Timisoara - Mathematics and Computer Science, Volume 58 (2022) no. 1, p. 4 | DOI:10.2478/awutm-2022-0002
- References, Integrable Systems (2022), p. 293 | DOI:10.1002/9781119988588.refs
- KP-KdV Hierarchy and Pseudo-Differential Operators, Communications in Advanced Mathematical Sciences, Volume 2 (2019) no. 2, p. 75 | DOI:10.33434/cams.478999
- Spectral Theory, Jacobi Matrices, Continued Fractions and Difference Operators, Fundamental Journal of Mathematics and Applications, Volume 2 (2019) no. 1, p. 63 | DOI:10.33401/fujma.540070
- Algebraic complete integrability of the c2(1) Toda lattice, Journal of Geometry and Physics, Volume 135 (2019), p. 80 | DOI:10.1016/j.geomphys.2018.09.008
- Geometric Study of a Family of Integrable Systems, International Electronic Journal of Geometry, Volume 11 (2018) no. 1, p. 78 | DOI:10.36890/iejg.545100
- Some fundamental properties of complex geometry, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 57 (2016) no. 1, p. 207 | DOI:10.1007/s13366-015-0238-6
- Algebraic integrability: The Adler-Van Moerbeke approach, Regular and Chaotic Dynamics, Volume 16 (2011) no. 3-4, p. 187 | DOI:10.1134/s1560354711030026
- Integrable systems and complex geometry, Lobachevskii Journal of Mathematics, Volume 30 (2009) no. 4, p. 292 | DOI:10.1134/s1995080209040088
- CYCLIC COVERINGS OF ABELIAN VARIETIES AND THE GENERALIZED YANG–MILLS SYSTEM FOR A FIELD WITH GAUGE GROUP SU(2), International Journal of Geometric Methods in Modern Physics, Volume 05 (2008) no. 06, p. 947 | DOI:10.1142/s0219887808003028
- Prym varieties and applications, Journal of Geometry and Physics, Volume 58 (2008) no. 9, p. 1063 | DOI:10.1016/j.geomphys.2008.04.005
- Analyse des singularités de quelques systèmes intégrables, Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, p. 85 | DOI:10.1016/j.crma.2005.06.006
- A Connection Between Geometry and Dynamical Systems, Journal of Dynamical Systems and Geometric Theories, Volume 3 (2005) no. 1, p. 25 | DOI:10.1080/1726037x.2005.10698486
- Le système différentiel de Hénon–Heiles et les variétés de Prym, Pacific Journal of Mathematics, Volume 212 (2003) no. 1, p. 125 | DOI:10.2140/pjm.2003.212.125
- Remarks on Kowalevski's top, Journal of Physics A: Mathematical and General, Volume 34 (2001) no. 11, p. 2111 | DOI:10.1088/0305-4470/34/11/304
- The generalized Hénon-Heiles system, abelian surfaces and algebraic complete integrability, Reports on Mathematical Physics, Volume 47 (2001) no. 1, p. 9 | DOI:10.1016/s0034-4877(01)90002-3
- Completely integrable systems: Jacobi's heritage, Journal of Geometry and Physics, Volume 31 (1999) no. 4, p. 265 | DOI:10.1016/s0393-0440(99)00015-7
- On Affine Surface That can be Completed by A Smooth Curve, Results in Mathematics, Volume 35 (1999) no. 1-2, p. 107 | DOI:10.1007/bf03322026
- The full Geometry of Kowalewski's top and (1, 2)‐abelian surfaces, Communications on Pure and Applied Mathematics, Volume 42 (1989) no. 4, p. 357 | DOI:10.1002/cpa.3160420403
Cité par 19 documents. Sources : Crossref