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ABELIAN SURFACES AND KOWALEWSKFS TOP

BY A. LESFARI (1)

ABSTRACT. — This paper presents a new and systematic method to integrate the problem of Kowalewski* s
rigid body motion, and leads to a detailed geometric description of the invariant surfaces (tori) on which the
motion evolues.

Introduction

This paper deals with a geometric and systematic approach to the integration of
Kowalewskfs rigid body motion. It is well known that this motion is completely
integrable and Kowalewski [16] integrates the problem in terms of hyperelliptic quadratu-
res after a complicated and mysterious change of variables. The classical approach to
solving integrable systems was based on solving the Hamilton-Jacobi equation by sepa-
ration of variables, after an appropriate change of coordinates; for every problem finding
this transformation required a great deal of ingenuity. Up to now Kowalewski's method
has been neither understood, nor improved nor extended to other cases except for some
modest amelioration contributed by Kotter [15] and Kolossoff [14]. This paper presents
a new and systematic method to integrate the problem, and leads to a detailed geometric
description of the invariant surfaces (tori) on which the motion evolves.

As is well known, a Hamiltonian system

z = J —, J = J (z) antisymmetric, z e R2 n

8z

is called completely integrable (in the ̂  sense), if it has n constants of the motion
Hi, . . ., H^ in involution with linearly independent gradients. By the Arnold-Liouville
theorem, the compact and connected invariant manifolds

n

n {H.^zeR2"}, c,e(R
j=i

(1) Supported in part by N.S.F. Grant 8102696 while visiting Brandeis University, Waltham, MA 02254
(U.S.A.).
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194 A. LESFARI

are diffeomorphic to a real torus and there is a transformation to so-called action-angle
variables, mapping the flow into a straight line motion on that torus. In most examples,
the tori (of the Arnold-Liouville theorem) are real parts of complex algebraic tori (called
Abelian varieties): they come equipped with an algebraic addition law. Adier and van
Moerbeke ([3], [4]) have called such systems algebraically completely integrable. They
have developed methods, at first, to recognize such integrable systems among families of
Hamiltonian systems and, at second, to integrate such problem in terms of Abelian
integrals; this approach is inspired by the work of Kowalewski. For example in [4], the
criterion is used to detect the algebraic completely integrable geodesic flows on SO (4)
for a left invariant diagonal metric: the only one leading to an integrable flow is
Manakov's metric. This problem was integrated using coadjoint orbits on Kac-Moody
Lie algebras [2]. Mumford [4] then recognized the nature of its invariant tori and
Haine [10] used the Laurent solutions to the differential equations to realize the invariant
tori as Prym varieties on which the flow linearizes. Recently, Adier and van
Moerbeke ([5], [6], [7]) have classified the algebraically completely integrable geodesic
flows on SO (4) for a left invariant metric and developped a general and effective method
to integrate such systems.

This paper deals with the Kowalewski case in the dynamic of the rigid body, which
will now be explained. With Arnold [8], the differential equations of motion of a rigid
body about a fixed point are given by the customary Euler-Poisson equations

(Int 1) 'M=[M,AM]+^[r, L]
r==[r,AM]

where

j~ 0 -m3 rn^l
M=(MJfc)l^^3=EmJ6?J= ^3 0 -^i |eso(3)

L—^2 m! 0 -

^M=(AjkMjk)l^j,k^3=T.lJ~lmjejGSO(3)

~ 0 -Y3 Y2 ~|
^=(^jk)l^k^=T.yjej= Y3 0 -Yi I e so (3)

_-Y2 Yi 0
and

-^
L= ^

-I.

M, r, L, I=diag(Ii, \^ 13), n and g denote respectively the angular momentum, the
directional cosine of the z-axis (fixed in space), the center of gravity, the principal moment
of inertia of the body, the mass of the body and the acceleration of gravity, all expressed
in the body coordinates. In the absence of gravity i. e. L=0, we have the Euler free
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ABELIAN SURFACES AND KOWALEWSKI'S TOP 195

rigid body motion around a fixed point. The Lagrange top corresponds to the case
I^^ ?i=?2=0 i- e. the motion of a body around a fixed point symmetric around one
principal axis of inertia and the center of gravity is on the axis of symmetry. The so-
called Kowalewski top corresponds to the case ^=12=213, ^=0 i. e. the center of
gravity belongs to the equatorial plane, passing through the fixed point. Moreover, we
may choose ^=0, j^i==l and 13=!. After the substitution t->2t the system (Int 1)
becomes

(Int 2)

m^=m^m^

m^== — m i m 3 + 2 y 3

W3=-272

7i=2m3 72-^2 73

72=^1 73-2^371

73=^27l-^l72

and possesses the four invariants

Hi——(m?+mj)+m3+27 i=Ci

(Int 3) H2=mi7 i+m2 72+^3 73=C2

H3==7?+72+73=C3=1H^('^y_(^,^^y_^_,^j.^
where we may choose €3 = 1 without loss of generality. Let A be the complex affine
variety defined by the intersection of the constants of the motion

(Int 4) A= H {H,=c,}gC6 .
j= i

The first section explains how the affine variety A and vector-fields behave after the
quotient by some natural involution on A and how these vector-fields become well defined
when we take Kowalewski's variables. We show that these variables are naturally related
to the so-called Euler's differential equations and can be seen as the addition-formula
for the Weierstrassian elliptic function. In the second section, which is the main part of
the paper, we show that the Kowalewski top is algebraically completely integrable in the
Adier-van Moerbeke sense discussed above. The basic tool for doing this, is to consider
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196 A. LESFARI

the five parameter family of Laurent solutions

M°M ( Q = — + M l - h M 2 r + . . .
t

r° r1
^ ( o = — + — + ^ 2 + ^ 3 t + . . .t2 t

where the five free parameters a, P, ^, 9, n appear linearly, whenever they appear for
the first time. In fact these expansions contain a lot of information, which can be used
to construct the abelian surfaces on which the flow linearizes. For instance, substituting
these expansions into the constants of motion, leads to 4 polynomial relations between
a, P, ^, 9, H, hence defining a reducible algebraic curve 3) of genus 9, with two components
of genus 3, each of which is a double ramified cover of an elliptic curve. Then, we
complete A into an abelian surface by adjoining the curve 3)\ the abelian surface obtained
this way can be embedded into CP7 via the sections of the line bundle going with Q) and
its period matrix has the type

(\ 0 a c\ . , - ( a c\ .withim >0.
\0 2 c b ) \c b )

It can also be realized as the dual of the Prym variety of the double cover of the elliptic
curve mentioned above.

I am grateful to Pierre van Moerbeke for suggesting this problem and for several
helpful suggestions. I thank Luc Haine for many extremely helpful conversations and
Mark Adier for valuable remarks.

This paper is dedicated to Professor A. Sadel.

TABLE OF CONTENTS

Introduction
1. About Ko^alewskf s procedure
2. A geometric approach to study Kowalewskfs top

A. Asymptotic expansions
B. Divisors of poles
C. Abelian surface
D. Prym variety

References.

Note. Some results were obtained recently by Horozov-van Moerbeke [Abelian surfaces
of polarization (1, 2) and Kowalewski's top, Comm. Pure Applied Math., 1987], Adier-
van Moerbeke [About Lax pair for the Kowalewski's top (to appear)] and Haine-Horozov
in a forthcoming paper.

4s SERIE - TOME 21 - 1988 - N° 2



Let

ABELIAN SURFACES AND KOWALEWSKPS TOP

1. About KowalewskFs procedure

/: A -> A: (wi, m^ m3, Yi, Yi, Ya) ̂  (̂  ̂  ̂ 3,^,^ Ya)

197

be a birational map on the affine variety A (Int 4) where x^, x^ y^ and y^ are defined
as

(1.1)

2x^==m^+im^

2x^=m^—im^

-} ;l==•5c?-(yl+ ly2)

^=xj-(Yi-fY2)-

In term of these new variables, equations (Int. 2) with t -> it and (Int. 3) take the following
form where C^=6h^, €2=2/13 and C^k2

(1.2)

Xi=m3Xi--y3

^=-m3X2+Y3

^3= -A^ry^A-yi
y^==2m^y^

^2=-2W3^2

Y3=xi(xj-^2)-^2(^-^1)

and

(1.3)

Note that

(1.4)

^i^^2

mj=6Ai+}/i+^2-(^i+^2)2
A:

W3T3=2^2+^1^2+^2^!-^1^2 (^1+^2)

Yj=l-fc2+x2^2+^^l-^2^j•

T : (xi, ̂ 2, m3, ̂ i, y^ 73) -> (̂ i, ̂  - ̂  Y^ Yi^ - Ya)

is an automorphism of A, of order two. The quotient B = A/T by the involution T, is a
Kummer surface defined by

(1.5) f y,y2=k2

[y,R(x2)+y2^(x,)+R,(x„X2)+k2(x,-x^2=0

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



198 A. LESFARI

with

S inx)^--^^^2^^^!^2

(1.6) R l (Xl ,X2)=-6^X 2 X 2 +4^XlX2(Xl+ ; \ ;2 )

-(l-k2)(x^x^2+6h,(\-k2)-4hi

The variety A is a double cover of the surface B branched over the fixed points of the
involution T. To find them, we substitute m^ =73 =0 in the system (1.3), to wit

(1.7)

(a)

W

(c)

(d)

yiy2=k2

yl+y2=(xl+x2)2-6hl

^2yl+xly2:=xlx2(xl+x2)-2h2

xiy.+xiy^xixi-^-k2-!.

Away from the x^xj, we may solve (fc) and (rf) in y^ and ^2 ^d substitute into the
remaining equations; one then finds two curves in x^ and x^

(1.8)

R(Xi, X 2 ) = - X 2 X 2 + 6 / l l X l X 2 - 2 / ^ 2 ( X l + X 2 ) + l - f e 2 = 0

S(Xi, x^E^x^xtx^^x^+l-fc2)
x(x2+2Xlxi-6hlxj+l-k 2 )+fe 2 (x 2 -x 2 ) 2 =0

which intersect at the zeroes of the resultant of R, S:

(1.9) Res(R,S)^=x2(xt+6^x2+^2-l)2P8(Xl),

where Pg(xi) is a monic polynomial of degree 8. Since the root x^ must be excluded
(it indeed implies that the leading terms of R and S vanish), the possibles intersections
of the curve R and S will be

(i) at the roots of xf+6fe i x ^ + f c 2 — 1 =0: this is inacceptable, because then one checks
that the common roots of R and S would have the property that x^xj, which was
excluded.

(ii) at the roots of Pg(xi)=0; there, for generic k and h, x^xj.
Finally, we must analyze the case x^x2 for which one checks that (1.7) has no

common roots. Consequently the involution T has 8 fixed points on the affine variety
A. Clearly the vector field (1.2) vanishes at the fixed points of T.

Now, equations (1.5) imply that

-1
yl=^——^R^X^X^+k2(x^~x2)2+}v]

2R(x^)

y2=——————[^l(xl.x2)+k2(x,-X^2-^]
2R(xQ
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ABELIAN SURFACES AND KOWALEWSKFS TOP 199

with a radical w such that

W^R^Xi, X2)+fe 2(Xl-X2) 2] 2-4fe 2R(xOR(X2)=XF(Xl, X^).

This shows that the surface B is a double cover of the plane x^ x^ ramified along the
curve

(1.10) ^: ^(x^x^O.

This equation is reducible and can be written as the product ^i (x^, ^.^(x^, x^) of
two symmetric polynomials (in x^, x^) of degree two in each one of the variables Xi, x^
i. e.,

^l^l^2)=A(xOxj+2B(xOx2-C(Xl)=A(x2)x2+2B(x2)Xl-C(x2)

where A(x), B(x) and C(x) are three polynomials of degree two in x:

AOOEE-^fe+S/iJx^^-l

B(x)=2h^x2-^(2k(k+3h,)-i)x-2h^k

C(X)=x 2+4^fcx+2(fc 2 - l ) ( fe+3/^l)+4^ 2 .

The curve ^i given by the symmetric equation

(1.11) ^: ^(x^x^O

is elliptic:

(1.12)

-B(x,)± ^2(fe+3/zQ-47zj ^/R(xQ
X 2 = -

A<(x0
_ -B(x^)± ^/2(fc+3/z,)-"4fei ^/Rlx^)

~ A ^ )
Xi =

where R (x) is given by (1.6). Let ^2 be the curve defined by (1.11) but after switching
the sign of k. The curve ^i and ^2 intersect in 8 distinct points which happen to be
the fixed points of the involution T, because

Res OF,, ̂ -16ft2 Pg (x,)

where Pg (x,) is given by (1.9).

Now, differentiating the symmetric equation ^(x^, X2)=0 [or ^(^i. ^2)=°] with

regard to (, one finds

alF! • ^2 • .—^Xi+^-x^O
8x^ 8x^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



200 A. LESFARI

where

^vp
— l=2(A(x2)Xl+B(x2))=±2^2(fe+3^)-4^^/RO^) by (1.12).
6'Xi

Hence

(1.13)

Since R (x^) and R (x^) are two polynomials of the fourth degree in x^ and x^ respectively
and having the same coefficients, then (1.13) is the so-called Euler's equation. The
reader is referred to Halpen [12] and Weil [23] for this theory which we summarize here
after.

Let F(x)=aoX4+4al;c3+6a2X2+4fl3;c+a4 be a polynomial of the fourth
degree. The general integral of Euler's equation

can be written in two different ways:

(i) Fi(x, y)+2s¥(x, y)-s2(x-y)2=0

where

¥(x,y)=aox2y2+2a,xy(x-^y)-^3a^(x2+y2)+2a^x-^y)-^a^

and

_ , ,_¥(x)P(y)-¥2(x,y)
Fi(^)=

(ii) or in an irrational form

(x-y)2

¥(x,y)^^/¥(x)^¥(y)_

( x - y ) 2 ~ 8

which can be seen as the addition-formula for the Weierstrassian elliptic function

^(u)-^^(v))(2^(u).^(v)-(\12)g^)-g^-^(u)^(v)
2^(M+U)=

(^(M)-^(lO)2

A(JS ___________
^(U)= —— = ± /4^-g^-g,

du v

with ^ (u) = x, ^ (v) =y, ^ (u) = F (x), ^ (v) = F (y\ F (x) = 4 x3 -g^ x -g^
2 SP (u + v) = 5 and ^» ^3 constants.

4e SERIE - TOME 21 - 1988 - N° 2



ABELIAN SURFACES AND KOWALEWSKPS TOP 201

Let us now apply these facts to Kowalewski's problem with ^=—1, 0^=0, a^=h^,
a3=-/^ 04=l-fe2 , F(x)=R(x), F(xi, x^)=R(x^ X2)+3/ii(xi-;x;2)2 and
s=fe+3Ai . So the polynomial (1.11) which can also be regarded as a solution of
(1.13), can also be written as:

RiQci, X2)+2feR(xi , x^-k2(x^-x^2=Q

where R^ (x^, x^) is given by (1.6) and has the form

R(x,)R(x^-R2(x„x^
^(-^ •5C2)=

(^1-^2)2

Remember that R (xi, ^2) is given by (1.8). The solution of (1.13) can also be expressed
as:

(1.14)
R(x,,x^^R(x,)^R(x^

(x,-x,)2 +3/li==5.

Let us carry out the calculations, assuming the polynomial R(x) reduced to the form
^x3—g^x—g^ and call s^ (resp. s^) the relation (1.14) with the sign--(resp. +). Now,
outside the branch locus of B (1.5) over C2, the equation (1.13) is not identically zero
and may be written in the form

(1.15)

where g^ = k2 — 1 + 3 h\ and g^ = h^ (k2 — 1 — /i2) + A2, After some algebraic manipulation
we deduce from (1.4)

(m^x^-y^2=R(x^)-^(x^-x^2y^

(m3 X2 - Ys)2 = R (^2) + (xi - X2)2 Yz

(ms Xi-73)^3X2-73) =R(^i, ^2)

and from (1.3)

^R^+Oci-^)2.^

xJ=R(X2)+(Xi-X2)2^-

This together with (1.5) and (1.15) implies that

^si-g^s.-g^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



202 A. LESFARI

^ (x.-x,)4 r/R^x,)-^/R(xO^/R(x,JY ^^_3^)2_fc2

R(^)R(^)LV (^i-^)2 7 J (si-s^)2

In the same way, we find

4s|-^S2-^3

l2,^-^)2-^
(s,-s,)2

Consequently, the system (1.1) can be written as follows

(1.16)

where Ps(s)=((s—3h^)2—k2)(4s3—g^s—g^). As known, such integrals are called
hyperelliptic integrals and the problem can be integrated in terms of genus two hyperelli-
ptic functions of time. Finally, we have the

THEOREM 1.1. — (i) The complex of fine variety A(Int 4) is a double ramified cover on
the Kummer surface B (1.5), mth eight branch points (= zeroes of the polynome Pg^i)
(1.9)). (ii) The surface B is a double cover of plane (x^, x^) ramified along two elliptic
curves intersecting each other at the 8 points above, (iii) [16] The system of differential
equations (Int 2) is reduced to the system (1.16) which can be integrated in terms of genus
1 hyperelliptic functions.

2. A geometric approach to study KowalewskFs top

The system (Int 2) can be written as a Hamiltonian vector field

mi
m^
m3

Yi
(2.1) z=J8^

8z '
, J^1^1 r ) with M,Feso(3).

Y2

-Ys-

The second Hamiltonian vector field

^T^

8z
(2.2) z=J

is quartic and is written explicitly as

m^=Am^m^+B{—m^m^+2yy)
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ABELIAN SURFACES AND KOWALEWSKFS TOP 203

m2=Bm2m3-A(-mim3+2Y3)

m3=2A(-mim2+Y2)+B(m^-m2--2Yi)

Yi==(Am2-Bmi)Y3

Y2=(Ami+Bm2)Y3

Y3=(Bmi-Am2)Yi-(Bw2+Ami)Y2

where A=m^-mj-4Yi and B=2(m^m^-2y^. These vector fields are in involution,
i. e.

. /8H, ^HA{Hi , H^} = < — — , J——; =0
\ 8z 8z I

and the remaining ones are Casimir functions, i. e.

j^j^o.
8z 8z

To illustrate the method (announced in the introduction) in a simple example, let us
first examine the Euler rigid body motion around a fixed point. The system (Int 1)
reduces in this case to the following equation

(a) M=[M,AM]

which is explicitely given by

ml=(^3~^2)m2m3

(b) m2=(X, i— ̂ )mi3

W3=(^2-^l )Wim2

where ^.= 1/1^(1 gj^3) and has the two first integrals

(c) Hi=m^+mj+mj=Ci
. H^ = ?4 m\ + ̂ -2 m! + ̂ -3 ̂ J = ̂ 2

where c^ and €2 are constants. The system (b) with Hamiltonian (l/2)Hi is completely
integrable on the phase space which is the sphere Hi==Ci. For appropriate values of
the constants, this sphere intersects the ellipsoid H2=C2 in two circles and any representa-
tive point of (fc) moves on a circle of the sphere (uniform motion). It is well known
that the system (b) can be integrated in terms of elliptic functions. From system (b)
together with conditions (c) we obtain the following expression

^ (m3 (0 _____dm_____ _

J.s.o)^-^2)^-^)]1/2"'3^"^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



204 A. LESFARI

where

^ — (\ \ \ n \ \ n'2. _ ^2ct~c^a3 - ̂ 2 — ̂ ) ^3 — ̂ l^ a! - ~———~——
^2-^3

and

. C^ î̂ i . . .a^————_—, AIT'-A^T'-A^.
A,3—Al

If we replace teR by (eC then the function m^(t) is an elliptic function on a complex
torus and must have a Laurent expansion around an arbitrary complex valued constant
tQ. Therefore since a^ a^ and 03 only depend on c^ and c^, these two free parameters
must enter somewhere in the expansion of m^ around the blow up point. Indeed, it is
easy to see that the Laurent series solution of the system (a) has the form

oo

M(t)= ^ M^-to)'-1.
fc=0

Substituting this series into (a), one finds at the 0-th step a non-linear equation

(e) M^tM0, AM°]==0,

and at the fe-th step, a linear equation

(J^f - k I) (M^ = terms containing Mj for 1 ̂ j < k,

with ^ being the Jacobian of (e). The matrix (o^—k I) is always invertible, unless k =2
and then its rank equals 1. Consequently the coefficient M2 contains two free para-
meters, which account for c^ and c^. In fact, there is a much richer structure involved
in this example. Namely the circle of the sphere (Hi==Ci) extends to the complex torus
mentioned above, the flow is mapped by the integral (d) into a straight line motion on
that torus and the functions M(t) is meromorphic. The complex intersection

2

n{H,(M)=c ,}gC 3

1 = 1

is the affine part of an elliptic curve ^CP3 which is the above torus. This torus has an
algebraic addition law connecting p (t^ +1^) to p (t^) and p (t^) where p (t) = (m^ ((), m^ (Q,
m^ (0) is a solution of equations (fc).

This example shows that the classical way of solving Euler's equations in terms of
elliptic functions can be understood as a characterization of this complex torus. So the
main question is how to complete the affine variety (defined by the intersection of the
constants of the motion) and the differential equations on it into a non-singular compact
complex algebraic variety? In the above example, we have completed the affine variety
by the points of blow up, which are captured automatically by projectivizing the equations
of this variety in CIP3. But this procedure can never work in general; indeed, an abelian

4e SERIE - TOME 21 - 1988 - N° 2



ABELIAN SURFACES AND KOWALEWSKI'S TOP 205

variety of dimension bigger or equal than two is never a complete intersection. Therefore
if the affine part of an abelian surface is defined by 4 equations in C6, then the obvious
embedding into CP6, by making the equations projective, must have one or more
singularities at infinity. In fact, we shall show that the Laurent expansions can be used
to manufacture the tori, without ever going through the delicate procedure of blowing
up and down.

A. ASYMPTOTIC EXPANSIONS. — Let M and F have the following asymptotic expansions

(2.3) M= ^ M^-1 and r= ^ r^-2.
k=0 k=0

Substituting (2.3) in the differential equations (Int 1), at the 0-th step, the coefficients of
t~2 (for M) and t~3 (for F), yield a non-linear system

(2.4)
M°4-[M0, AM°]+[r0, L]=0

2r°+[r0, AM°]=O
and at the k-th step (fe^l), the coefficients of r^"2 (for M) and t^3 (for F) lead to a
system of linear equations in M*' and F*

(2.5) ^-"O-' for k = 1

~ k-l ~

- ^ [M^AM*--']!
j=i
k-l

- ^ [l^AM*--']
7=1

for k>l .

where .S? denotes the linear operator

^ /X \ / [M° ,AX]+[X,AM°]+[Y,L]+X\
\Y/ \ [r°,AX]+[Y,AM°]+2Y /

In the basis (^)ig^gg, £' is given by the matrix

0m-3
1
0

-Y^

m-, 0
0
-2

-m; 0
1 0

JS?=

-^

2y^ 2 2m°3 -m°,
m?-2y; -2m^ 2^

-^2 0 m^Y? -w,

which is the Jacobian of (2.4).

LEMMA 2.1. — The non linear system (2.4) defines two lines and two points.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



206 A. LESFARI

Proof. — The system (2.4) has the following explicit form

(a) m?+m^m^=0

(b) m^-m?m^+2y^=0

(c) m^-2y^=0(2.6)
(d) 2y;+2m^-m^=

00 2y^+m?y^-2m^y?=

(/) 2y^+m^y?-m?y^0.

Equations (a), (fc) and (c) imply that

(g) m?+2m^=0

W 2y^+(l+(2y^2)m^=0.

From equations (c), (d) and (n), it follows that

(j) 4y?+2(2y^)2+(l+(2y^)2)(m^)2=0

and by (c), {e\ (f), fe), (n) and (7), we obtain

^^(^^(y^O

y°2^-^°i-(W)=^

We now distinguish several cases:
Case I. — If m^=y^=0 then the solution of (2.6) is identically zero.
Case I I . - If y^=0 and y?= 1 it follows that the set of solutions of (2.6) is

(2.7) (m?, m^ m°^ y?, y^, y^)=(0, 2e, 0, 1, 0, -£),£= ±i.

Case HI. - If l-y^^^y^l-^y^-^y^O, this immediately implies y?=l/2
and y^=±f/2 . From equations (c), (g) and (/i), it follows that m^=±i , m?±fm^=0
and y^ = 0. Consequently, we find the two lines

(2.8) (m?, m^ m0^ y;, y^, y^) =(a, sa, e, 1/2, s/2, 0), £= ±f

where a is a free parameter. This concludes the proof of lemma 2.1.

LEMMA 2.2. — The system (2.5) has in
(i) case I I (2.7), 2 degrees of freedom for k = 2 and 1 degree of freedom for k = 3 and 4.
(ii) case I I I (2. 8), 1 degree of freedom for k = 1, 2, 3 and 4.
The proof of this lemma, is a linear algebra problem which is a straight forward

computation. Since we are interested in 5-parameter Laurent solution, we only consider
(ii). The eigenvectors V\, V^ V^ and V4 corresponding to the eigenvalues fe=l , 2, 3
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and 4 of the matrix

J^f=

- 1
—8

0

0
0

r8/2

e
1
0
0
0

1/2

CO

—a
1
£

-1

0

0
0
0
2

-28

ea

0
0
^

2e
2

—a

0-
2
0

—ea
a
2

are

V,=W-2), -a2, a, 0,0,1)
V2=(a, ea, -2e, 1, e, 0)

V3=(-e(a2-4), a2+8, -3a, -Sea, 3a, 6)

V4=(a(a2-8), ea(a2+12), -4e(a2-3), 6 (a2+2), 6e(a2-3), 20 ea).

We denote by ?, ^, 6 and ^, the free parameters obtained respectively at fe=l , 2, 3
and 4. If we put

X^Qni, m{, mi y{, j{, y{\ 1 ̂ 4

the solutions of (2. 5) are given by

x^pv,
X^-^A^^

X3=-^A,^A3+9V3

X-^-^A^^^A.-pV,
80 40 10 20

where

Ai^o^a^)/^ ea(a2-2)/2, 0, 1, 0, sa)

A2=(ea(a2-2), -a(a2+6), v.2+6, e(a2-2), -a2-^ 0)

A3=(e(7a2+8), -Pa^l^ 3a, 3ea, -3a, 0)
A4=(a(13a4+74a2+40), 6a(13a4-26a2-80), -4e(3a4-lla2+10),

2 (9 a4+32 a2-20), 2e(9a4-33a2+30), 0)
A,=(a(85a2-208), 6a(85a2+212), -4e(5a2+37), -6(5a2+2), 2e(15a2+lll), 0)

Ag=(63a, 63 ea, -72e, 108, 108 e, 0)

A7=(a(31a2+80),£(31a2-100), -4e(lla2-5),6(lla2-10),6e(lla2-5),0).
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To conclude the generic solution blows up after a finite time according to a Laurent
series within a 5 parameters family of Laurent solutions. By the majorant method, any
formal Laurent series solution of a system of differential equations with quadratic right
hand side automatically converges. Now it is easily checked that

(-^(^-o

and it follows from Lemma 2.2 that

det(jy-kl)=(k+l)k(k-l)(k-2)(k-3)(k-4).

Consequently, we have

THEOREM 2.1. — The system of differential equations (Int 2) possesses Laurent series
solution

00 00

(2.9) m,=S»"^-1 and y,= E y^"-2, 1^3
t=0 k=0

which depend on 5 free parameters (=dim (phase space)—I), with leading terms given by
(2.8).

B. DIVISORS OF POLES. — We now search for the set of Laurent solution which remain
confined to a fixed affine invariant surface, related to specific values of Ci, €3, c^, i. e.

_ f The Laurent solutions m^.(t), y,(t)> 1 ^J^3 1
£ - [ such that Hfc (m, (t), y; (()) = c^ 1 ̂  k ̂  4 J
=4 polynomial relations between a, p, ,̂, 9 and u;

(•^(a2^)?^!^
-ec^a^)?3--6(351+129

8=(5a2-2)p4-6p2?l+84p9-240^
8c4=(a2-l)((na2+10)p4+54p2A,+108p9+240^)

= algebraic curve
(a, p, e) such that P(o, p, e^o^-lKo^-^-PO^+c^O

P(p)=Clp2-2ec2P-l
E = ± I

The map

(2.10) CT. : Q, ̂  2,: (a, p, e) i-^( -a, P, e)

is an involution on Qy The quotient 2^=QJa^ by the involution (T^ is an elliptic curve
defined by

(2.11) ^°: K2=P2(p)-4c4p4.
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The curve ̂  is a 2-sheeted ramified covering of S>^

(2.12) (p,: ^-^°:(a,u,p,)^(u,p,e)

( ^-2^+p()+u

(2.13) ^ : 1 2?4
8 ^P^^p4.

Let us now look more closely at certain points of interest on the non-singular version of
the curve Sly For p sufficiently small,

2p4+P(P)+/PZ(p)-4c4p4

x =————————i———————=1-C4+0(P)a-———————2P4———————=1-^-

and

^_2^+P(^-^~(fi)-4c^ i

2p4 "p4'
- — — = - ( - ^ o m

At p= oo, the curve ̂  behaves as follows

2(a2-!) ̂ =c,±^c^4c^+0(^

Now, the curve ̂  has 4 points at infinity pj(l^j ̂ 4) and 4 branch points ^,==(a==0,
M=-2p4-P(p), p4+p(p)+c4=0) (1^4) on the elliptic curve ^°. The divisor
structure of a, P on ^g is

(a)= E ^- Z 7?,
1^J^4 l^j'^4

(P)= 4 zeroes- ^ .̂.
1^^4

Let ^(^°)= genus of ^°, g(2,)= genus of ,̂, n=f f of sheets and u = = f f of branch
points. Then by the Riemann-Hurwitz's formula

^)=n(^o)-l)+l+-!;=3.

The map

(a, M, p, e)i-^(a, M, -p, -e)

is an isomorphism between Q^, and ^e=_, and so we have the following commutative
diagram

^s- ————————. ̂ -,
^'i [ '''«=-•

^0 , -——^——^ S i ° _ .
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Thus, we have proved

THEOREM 2.2. — The divisors of poles 2^^ (2.13) of the functions m^ Jj^^j ^3)
are two isomorphic irreducible Riemann surfaces of genus 3. They are 2-sheeted ramified
coverings of two elliptic curves ^=±1 (2.11).

Remark. — From the Poincare residue formula, we know that the 3 holomorphic
differentials on ^g are of the form

g(oc, P,s)dp _ ^(a, P, e)dp
(3P/acx)(a,P,£) OCM

where ^(a, P, s) is a polynomial of at most degree five in a and P. It is easy to verify
that

,. i., ^P (a2-!)?2^ dp(2.14) C0o=—, o)i=-—————-, (02=—
U OCM OCM

form effectively a basis of holomorphic differentials on ^g. Observe that (7^(0o=o)o
and CT^O)^= —CD^(/=I , 2) for the involution <7g (2.10).

C. ABELIAN SURFACE. — Let T be a smooth surface compactifying A (Int 4) and let

^=^e=f+^=-i ̂  T

be a divisor (to be shown later). Consider a basis 1, /i, . . ., f^ of the vector space

^ (^) = {/, /meromorphic on T, (/) ̂  - ̂  }

and the holomorphic map

T-^CP^ /^(l,/i(p), ...,/N(/O),

considered projectively, because if at p somefj(p)= oo, we divide by^} having the highest
order pole near p, which makes every element finite. This defines a map of T into
CP^. The Kodaira embedding theorem tells us that if the line bundle associated with
the divisor is positive, then for some fe^O, eZ, the functions of ^f(fe^) embed smoothly
T into CP^ and then by Chow's theorem, T can be realized as an algebraic variety, i. e.

T=n{P,(z)=0,zeCPN}
j

where Py (z) are homogeneous polynomials. In fact we shall show that in our case, k = 1
suffices i. e. the divisor Q) provides a smooth embedding into CtP7, via the meromorphic
section of o^(^). The Riemann-Roch theorem and the adjunction formula (on abelian
surfaces) together imply that

dim^f(^) =N+1 =g(^) -1.
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Based on this motivation, we wish to find a set of polynomial functions
[fo^^fi. • • - , /N} having a simple pole along Q) such that the embedding of Q) with
those functions into CP1^ yields a curve of genus N+2. Let

i polynomials / of degree ^ r behaving like
^= f

( +/1 + 0 (t) mod. the constants of motion

and let {/o = 1, /i, . . ., /N, } be a basis of J^. The map

Q^C^r: p^lmt(f,(p\ ...,/N^))=(O,/?(^), ...,/S^))
( -> 0

maps the curve 3> into S" g CP\ We look for r such that

^(^=N,+2, ^'•£CP\

LEMMA 2.3:

^°={/o=l}
.S?l=.S?o©{/l=Wl,/2=m2,/3=?n3}

/l=a+e(a2-2)p+0(f)

/^^-^p+o^)

y^+ap+oco

^^^l^f^^^^^_^^^J
^-^-eap^O^)

/,=^P+p^O(,)

^3=^2©{/6=/3/5+/l/4}

eta2—!)?2

/6=—————-a(ec2-ClP+(a2-l)p3)+0(0

^4 = S'3 © {/7 = (/2 Yl -/l Y2)/3 + 2/4 Y2 }

/7=^(-ec2+Cl.p-2(a2-l)p3)-a(2^-3£C2p-ClP2+2(a2-l)P4)+0(0.

The proof of the previous lemma can easily done by inspection of the expansions <2.9).
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PROPOSITION 2.1. — ^f4 provides an embedding of S4 into projective space such that

(cx,M,P)e^limrC/o,/i, ...,/,)=((),/?, . . . , /^)eCP7

and the genus of S4' is

^)=9.

Proof. — It turns out that neither J^f1, nor ^f2, nor ^f3 yields a curve of the right
genus; in fact

^(^dim^+l, r = l , 2 , 3

For instance, the embedding into CP3 via J^1 does not separate the sheets, so we proceed
to ^f2 and we show that

g(S2 as embedded into CP5)-2>5

which contradicts the fact that N+1 =g(S) — 1, so we look at J^f3 and we find that

g(S3 as embedded into CP)6)-2>6

and the contradiction persists. We proceed now to J^f4 and if we denote by

(^ . . .,^)=F,=F,°+F^+. . ., 0^7
V4 A/

and

^=(a=±l ,M=±P 2 ^-4c4,P=a)) (1^4)

the 4 points at infinity of ^g, we obtain

^-(^iH.'-^-^-t^)^
=(0, 0, 0, 0, 1, ± E, 0, T e /c^-4c4)=4 distinct points

and using the transformation

^=i-^s=-f'- (a, M, P)^(-a, -M, P),

we have that

FWk,,=F^)|^_,,

implying that the 4 points ̂  on one curve are identified pairwise with the 4 corresponding
points on the other curve. Let 5= 1/p be a local parameter for pp we have

-3p0

——^^(O, ± 1, ± £, £, 0, ± £, 0, -C^)
3s
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which shows that

gFg
~8s^ (Pj) ^^=f os

and consequently the curve ^g^ intersects transversely the curve ^g=-i in 4 points at
infinity (fig. 1).

fci, . . . ,&4=(a=0) , P=0)
p^ . . . ,^=(a=±l ,M=±P 2 ^-4c4, P=oo)

In a neighbourhood of the points ^=(a=oo, P==0) (1.^/^4) it is more convenient to
divide the functions /o» • • •» /? by /i and one can see that if we put

^ . . .^\=^=^+^t+ . . ̂  0^fc^7

that

J^(^)=(0, 1, e, 0, 0, 0, 41!, 0)=4 distinct points

and consequently

g(§4' as embedded into CP7)-2=7

i. e. g ( S ^ ) =9. This completes the proof of proposition 2.1.
Let J^==J^4 and ^^.S^gCF7. Next we wish to construct a surface strip around ^

which will support the commuting vector fields.
(i) At all points where a, P^O, oo, the Laurent solutions are nicely convergent (by

the majorant method). Therefore, at most points of S there is a transversal fiber to
the curve. Hence this defines a smooth surface strip around S except at the bad points.
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(ii) Now we need to construct a surface strip around S at the bad points as well. For
doing that, we must introduce the concept of projective normality. Ultimately, we wish
to prove that in the various charts

(2.15) \ J ] = P0^110111^1 \-l\ 0 ̂ 7 ̂  7, k fixed.
\fk / \fk /

This enables one to show that fj/fj, is a bona fide Taylor series starting from every point
in a neighbourhood of the point in question i=CP7.

PROPOSITION 2.2. — The orbits of the vector field (2.1) going through the curve Q form
a smooth surface £ near Q) such that

£\^gA.

Moreover, the variety

T=AUS

is smooth, compact and connected.
Proof. — Let I = { t e C, — 5 < t < 5 } be an interval, let

(t, p) ̂  (p((, p)={(M(t, p\ r(t, p)\ tel,pe^},

be the orbit of the vector field (2.1) going through the point p e ^ , let ZpC:CP7 be the
surface element formed by the divisor 3) and the orbits going through p, and set
£= U ^p- Consider the curve ̂  =K 0 S where 7i<=CP7 is a hyperplane transversal to

pe 31

the direction of the flow. If Q)' is smooth, then using the implicit function theorem the
surface £ is smooth. But if ^ is singular at 0, then £ would be singular along the
trajectory (^-axis) which go immeidately into the affine part A. Hence, A would be
singular which is a contradiction because A is the fibre of a morphism from C6 to C4

and so smooth for almost all the four constants of the motion Cj. Next, let A be the
projective closure of A into CP6, let z=(zo, Zi=mi/Zo, . . . , 73/20) eCP6, let
^=A Pi (zo=0) be the locus at infinity. (In fact, we have ^=d^ U ̂  U S' where d^ d^
are straight lines and S' a circle with d^C}d^=0, djC}S'=l point, 7=!, 2) and let
f= (/o. /i, . . ., /7) e ̂  (^)- Consider the map

A^CP^CP^z-^z),

and let T=/(A). In a neighbourhood ^(^)gCP7 of;?, we have

Sp=T

^\®gA.

Oherwise there would an element of surface Sp ̂  T such that

^p|5:;=?-axis

4e SERIE - TOME 21 - 1988 - N° 2



ABELIAN SURFACES AND KOWALEWSKI'S TOP 215

orbit (p (t, p) = t-sixis\p g A,

and hence A would be singular along the t-sixis which is impossible. Since the variety
A Pi (zo ̂ 0) is irreducible and since the generic hyperplane section n^ of A is also
irreducible, all hyperplane sections are connected and hence ^ is also connected. Now,
consider the graph (/^CP^CP7 of the map/, which is irreducible together with
A. It follows from the irreducibility of ^ that a generic hyperplane section graph
(/) Fl (Tigen. x CP7) is irreducible, hence the special hyperplane section

n^ = graph (/) U ((^o == 0) x CP7)

is connected and therefore the projection map

7^(^p.)=/W=^

is connected. Hence, the variety

AUS=T

is compact, connected and embeds smoothly into CP7 via / This concludes the proof
of proposition 2.2.

In fact, we shall prove a somewhat stronger statement than (2.15), namely that (2.15)
is namely that (2.15) is satisfied with quadratic polynomials. By inspection one sees
that the f unctions/o, . . .f^ do not satisfy that property. For example

f4)^4^-^1 ^Polynomial f^V 0^7.
\J4 / U4) V4 /

Hence we must take functions with higher order poles. Let us consider for instance
.S?(2^,+^,_.).

PROPOSITION 2.3. — We have dim X (2^,+^_,)=18 and 2^,+^_, is pro-
tectively normal and embeddable into CP17.

Proof. — For ease of manipulation, we are going to use x^, x-^, y^, y^ given by
(1.1) instead of the functions m^, m^, Yi, y^. Let gy=l, g^ .. ., g^ be a basis of
^ (2^,.+^_.) where g^=x^, g^=x^, g^, g^, g,=f^ g^f^ g,=f^ ^=gj,
89=8283, 810=828^ gn=y2, 812=81811, 8l3=82l8ll, 8l*=83l8ll, 815=8285,
8i6 =8286 and 817=8287- These meromorphic functions have the properties

Qri)=-^_;
(82)=-^=i

fek)=-^=,-^=-,, 3^fe^7

(^)=-2^,;

(^)=-2^-^_,, fc=9, 10, 15, 16, 17
feu)=-2^,+2^_,
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(^)==-2^e=f+^e=-i

(^)=-2^,, fc=13, 14.

Hence, the map

2 ̂ +^-,^CP17 : j^ lim ̂ o(p), . . .,^i7(P))=(0, ^? (P), • . ., g°i7(p))
t ->• 0

maps the curve 2 ^^+^g=_f into CP17. In fact, in a neighbourhood of the points at
infinity ̂ .=(a= ± 1, M= ± P2/c^^, P=oo) (1^7 ̂ 4) it is simpler to divide the
functions go, . . ., g^ by g^ which makes (gk/gio)(pj) (0^fe^l7) finite. Whereas in
the neighbourhood of the points fc,=(a=oo, |3=0), it is more convenient to divide by gg
which makes (gklgs)(pj) (0^fc^l7) finite. Next, using the vector field (2.1), we show
that in a neighbourhood of the points p p and modulo linear combination of the constants
of motion

f^V^10"^10, 0^17
\^io/ C?io)2

quadratic polynomial in (^o? • • • ? ^17)
= t e i o ) 2

= quadratic polynomial ( —°-, . . ., -12 ).
\gio Sio/

Also, in a neighbourhood of the points bp we have

f^ \== quadratic polynomial f^0 , . . . ,^1 7) .
\^8/ \^8 ^8 /

This finishes the proof of proposition 2. 3.
It follows from the previous proposition that at the bad points pp bj the series (gk/gio)

(n.), (gklgs)(bj) (0^fe^l7) converges as a consequence of Picard's theorem applied to
the system of ordinary differential equations (gk/gj)'(<=8 or 10).

PROPOSITION 2.4. — The t^o commuting vector fields (2.1) and (2.2) extend holomor-
phically and remain independent on T.

Proof. — Let cp^ and (p^2 be the flows generated respectively by vector fields (2.1)
and (2.2) and consider a point p e T\A = Q). For 8 sufficiently small.

^(P\ VTi, -5<8<Ti<5

is well defined and (p^^eA. Then we may define (p^2 on T by

(^(^(p-^i (p^ (p^i (̂  ^^(^(p-i (^((p-i (p))),
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where t" (p) is a neighbourhood of p. By commutativity one can see that q/2 is
independent of t^

(p-1!-8! q/2 q/l+Sl (^)=(p-tl (p-<Pi (pt2 q/1 (p8! =(p-^l (pt2 (pti (^)

We affirm that (p^ (^) is holomorphic away from ^. This because (p^ q/i (^) is holo-
morphic away from Q) and that (p is holomorphic in V (^) and maps bi-holomorphically
^ (/?) onto ̂  (cp'i (/?)). This completes the proof of proposition 2.4.

Since the flows q/i and (p^ are holomorphic and independent on ^, we can show
along the same lines as in the Arnold-Liouville theorem that T is a torus. And that
will be done, by considering the holomorphic map

^: C2 -> T: (^, r,) -> ̂  (^, t,) = q/i (p^ (p)

for a base point;? e A. Then

L={(t„t^eC2:x¥(t„t^=p}

is a lattice of C2, hence

^V: C^L-^T

is a biholomorphic diffeomorphism. Therefore T^CP7 is conformal to a complex torus
C2/!. and an abelian surface as a consequence of Chow. Finally, we have the

THEOREM 2.3. — T is an abelian surface on \vhich the Hamiltonian flows (2.1) and
(2.2) are straight lines motions.

PROPOSITION 2.5 .— There are on T two holomorphic differentials dt^ and dt^ such that

^ll^®! and ^21^=^2

where (Oi and o)^ and the two holomorphic differentials (2.14) on Q)y

Proof. - Let /?e^ 0 { a M = ^ 0 } where u is given by (2.11). Around the point p, we
consider two coordinates on T,

T=—=-e^+0(r2)
m3

^ f xi = - f p 4- 0 (t) along ̂ ^.
lx2=fp+0( r ) along ^e=-f

x=

We denote by 8/8t^ (resp. 3/3^) the derivate according to the vector field (2.1) [resp.
(2.2)]. Obviously we then have

^ 1 ( 8X . ^ \^i=———- —d^-—dx}
A(T,X)\^ ^ /
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dt.=2~
A(T,X)^

8x , ^T ,- A + — d x
8t, 8t,

with

8^ 8x 8x 8x
^ x ~ St^ ' 8t^ 8t^ ' 8t^'

By direct computation using the asymptotic expansions, we find that

^=-s+0(Q, 5T- =-4£(a2-!) ̂ ^0(t)

= 8 a ((a2-l)?4-^^ 0(0

8t^ 8t^

^=-2ap-+0(0, &c

8t^ 8t^

where P(p)=Ci P2-^^ P — l . From which one can deduce the two differentials dt^
and dt^. The restrictions of dt^ and dt^ to the curve ̂  are given by

AiL=ki
(a2-!)?2^ )

^2^,=^

OM

dP

au

fei, fe.eC^1, ^2

and are the two holomorphic differentials c0i, o^ (2.14) on ^g. This completes the
proof of proposition 2. 5.

PROPOSITION 2.6. — The vector field (2.1) [r^sp. (2.2)] is regular along Q), transversal
to Q) at every point R^O (resp. P^oo) and (doubly) tangent at P=0 (resp. P=oo).

Proof. — Using the same notation as in proposition 2.1, one can see that

-̂ (p,) -̂ (p,)]
3F,°,F,1: det 8S 8S \^0,

K ' ' t -I—'l /• \ T~'1 /• \ In(Pj) F ,̂)J

and consequently the vector field (2.1) is transversal to 2 at the 4 points pj of
2^=i C\ ̂ g= -i. From proposition 2. 5, the function

^^(a2- ! )?2--
0)2 ^2 P

is meromorphic along a neighbourhood of fcy=(a=oo, P=0) (1^7 ̂ 4) and provides the
tangent to the curve Q) in the coordinates ^ and r^. The function coi/co^ vanishes,
whenever the vector field (2.2) is tangent to Q) and has a pole whenever (2.1) is tangent
to Q). Hence the zeroes bj of ©2 provide the 4 points of tangency of the vector field
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(2.1)to^. We find that

V <aro <ari Aai
<-' K9 '-' ( ? dCL

-^^(fo) A^O^)
ap J ap J

^(^) ^(^)

and consequently (2.1) is (doubly) tangent to 2 at 4 points fc^ which concludes the proof
of proposition 2.6.

PROPOSITION 2.7. — The differentials ©i, 0)2?/? ^2 0 ̂ .7 ̂  7)/orm a basis for the space
Q (^) ofholomorphic differentials on 2.

Proof. — The adjunction formula gives us a map, the Poincare residue map, between
meromorphic 2-forms on T with a pole along Q) and holomorphic 1-forms on Q). Applied
to the 2-form co =fj dt^ A dt^ wiihfj e ̂  (Q)\

dt^ A dt^

w
dt,

(^i)(l//,)

Res (D

a (^i)(ti//p+0(t?))

dt,
3 W8t^)(l/f,)

dt,

-f^t^f^,.

Hence

0(^)={o)i,o)2}e{/>2, 1^^7}

and this finishes the proof of proposition 2.7.
Remark. — It is interesting to observe that the embedding of Q) into CP7 is the

canonical embedding,

^CP7:/^^,/?^, ...,/?0)2).

As we have seen, the involution T (1.4) has 8 fixed points on the affine variety A. In
fact, it has 8 other fixed points at infinity given by the branch points of ®g on ̂ . This
is the object of the

PROPOSITION 2.8. — The involution T (1.4) on the Abelian surface T coming from the
one defined on the affine variety A has 8 fixed points at infinity.

Proof. — This is easily proved as follows. From the asymptotic expansions (2.9),
one can see that the functions m^, m^, Yi, 72 remain invariable by the transformation

(r,a, P)->(-r,-a, P)

whereas m^ 73 change into —m^ —73. Then the involution T (1.4) is transformed at
infinity into an involution Og (2.10) on 3)y Now the fixed points of dg are given by
the branch points of ^g on ̂ . This concludes the proof of proposition 2.8.
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D. PRYM VARIETY. — As is well known, if the period matrix of an abelian variety A is
(A, Z) with

A= 8j 821 . . . 18,, e f^j, Z symmetric, Im Z > 0

then the period matrix of the dual abelian variety of A [i.e. the group Pic°(A) of
holomorphic line bundles on A with chern class zero] is (8^A~1 , 8^A~1 ZA~1).

THEOREM 2.3 .—The abelian variety T is characterized as the dual Prym variety
Prym (0>J^)* of the genus 3 curve ^g (2.13) \vhich is a double cover of the elliptic curve
^°(2.11).

Proof. - Let A .̂, B^(l^;^3) a basis of cycles of ^ (Fig. 2) such that:
(A,, A^=(B,, B,,)=0, (A,, B,)=8,fc, cj,(A,)=A^ a,(Bi)=B3, a,(A,)= -A,,
a,(B^)= -BI, (l^/, k^3, 1=1, 3) for the involution 0^(2.10).

Fig. 2

From the double cover (pg (2.12), we can construct a subabelian variety of the Jacobi
variety Jac(^g) of Q)^ called a Prym variety Prym(^g/^): the involution Og on ^g,
extends by linearity to a map (jg: Jac(^g) -^Jac(^g). Up to points of order two,
Jac(^g) splits up into an even part Jac(^) and an odd part Prym(^g/^). The period
matrix of this Prym variety is explicitelty given by

0=

2 ®i ©i 2 coi ®i
JAi JA2 </BI JB2

2 0)2 0)2 2 ©2 0)2
JAi JAz ^BI JBz
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where Oi and 0)2 are two holomorphic differentials on ̂  (2.14). Let us call

U=
2 coi ©i

JAi JA2

2 02 ®2
JAI JA2 .

V=

2 ©®1 COl
JBI JB2

> ©2 ®2
JBI JB2

2 0)2
JBI JB2

o, 0),

^i=2 JAi JA2and ^2=

0)2
L^Ai _J

®2
^A2 _

Observe that in the new basis e^ =e^/2, e^=e^ the period matrix Q takes the form

(2.16) Q^A-^A^ZA-1)

where

A=^ j, Z = U ~ 1 V A symmetric and ImZ>0.

Consider now a basis dt^ dt^ of holomorphic differentials on T, the map

T -> C2/!^ : p -> ( / h a basis a,, fc, (/ = 1, 2) of Hi (T, Z), the period matrix
JpO \dt2/

Q*=
AI ] dt, ] Ai ] Ai

^a\ Ja2 Jbi Jb^

dti ^2 I dt^ ] ^2h ^2 dt^ dt^
^a\ Ja2 Jfci Jb2^a\ Ja2 Jbi Jb'j

and the lattice

""-{^'Jd'Q^-fC'^'-"'52I I Mfci \

'-.AJ^-""I 1 Ja.\dt2/ Jb,\dt2/

associated to n*. By the Lefschetz hyperplane theorem, the map H^ (^, Z) -»- Hi (T, Z)
induced by the inclusion ^ c; T is surjective and consequently there are 4 cycles
a? bj(j= 1, 2) on the curve ̂  such that

0)i 0)i 0)i 0)i|
I Jai Ja2 Jbi Jb2 I0*= val

©2 0)2 0)2 0)2
Jai Ja2 Jbi Jb->
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and

^zJM^-fM:^^Ln.=-c i Ja,v°2/ J^-v^/
where o) i==Ai |^ , ©2== ̂ l^e (proposition 2.5); hence the 4 cycles a? bj(j=l, 2) in ̂
which we look for are Ap B^(/= 1, 2) and they generate H^ (T, Z) such that

Q*=

©i o)i ©i
•/AI JA2 */BI Jl

0)2 G)2 ®2
JAI JA2 JBI JB

®1

0)9

is a Riemann matrix (1). Since U=2U*A~ 1 and V=2V*A~ 1 we have
2A - 1U - 1VAA - 1=(U*) - 12V*A - 1 and from (2.16), we deduce that
Q*=(A, Z). Consequently T and Prym(^/^°)* i.e. dual of Prym(^/^°), are two
abelian varieties analytically isomorphic to the same complex torus C2/^*. By Chow's
theorem, T and Prym(^/^)* are then algebraically isomorphic. This completes the
proof of theorem 2. 3.
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