Let be a compact Riemannian manifold of dimension .We suppose that is a metric in the Sobolev space with and there exist a point and such that is smooth in the ball . We define the second Yamabe invariant with singularities as the infimum of the second eigenvalue of the singular Yamabe operator over a generalized class of conformal metrics to and of volume . We show that this operator is attained by a generalized metric, we deduce nodal solutions to a Yamabe type equation with singularities.
Mots-clés : Second Yamabe invariant, singularities, Critical Sobolev growth.
@article{AMBP_2012__19_1_147_0, author = {Benalili, Mohammed and Boughazi, Hichem}, title = {The second {Yamabe} invariant with singularities}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {147--176}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {19}, number = {1}, year = {2012}, doi = {10.5802/ambp.308}, zbl = {1256.58005}, mrnumber = {2978317}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.308/} }
TY - JOUR AU - Benalili, Mohammed AU - Boughazi, Hichem TI - The second Yamabe invariant with singularities JO - Annales mathématiques Blaise Pascal PY - 2012 SP - 147 EP - 176 VL - 19 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.308/ DO - 10.5802/ambp.308 LA - en ID - AMBP_2012__19_1_147_0 ER -
%0 Journal Article %A Benalili, Mohammed %A Boughazi, Hichem %T The second Yamabe invariant with singularities %J Annales mathématiques Blaise Pascal %D 2012 %P 147-176 %V 19 %N 1 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.308/ %R 10.5802/ambp.308 %G en %F AMBP_2012__19_1_147_0
Benalili, Mohammed; Boughazi, Hichem. The second Yamabe invariant with singularities. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 147-176. doi : 10.5802/ambp.308. http://www.numdam.org/articles/10.5802/ambp.308/
[1] The second Yamabe invariant, J. Funct. Anal., Volume 235 (2006) no. 2, pp. 377-412 | DOI | MR
[2] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), Volume 55 (1976) no. 3, pp. 269-296 | MR | Zbl
[3] On the second Paneitz-Branson invariant, Houston J. Math., Volume 36 (2010) no. 2, pp. 393-420 | MR
[4] A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Volume 88 (1983) no. 3, pp. 486-490 | DOI | MR | Zbl
[5] Introductions à l’analyse sur les variétés, Courant Lecture Notes in Mathematics, 5, Diderot Éditeur, Arts et sciences, Paris, 1997
[6] Le problème de Yamabe avec singularités, Bull. Sci. Math., Volume 132 (2008) no. 7, pp. 575-591 | DOI | MR
[7] Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math., Volume 92 (1988) no. 1, pp. 47-71 | DOI | MR | Zbl
[8] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984) no. 2, pp. 479-495 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439291 | MR | Zbl
[9] Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3), Volume 22 (1968), pp. 265-274 | Numdam | MR | Zbl
Cité par Sources :