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The second Yamabe invariant with singularities

Mohammed Benalili
Hichem Boughazi

Abstract

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3.We suppose
that g is a metric in the Sobolev space Hp

2 (M,T ∗M ⊗ T ∗M) with p > n
2 and

there exist a point P ∈ M and δ > 0 such that g is smooth in the ball Bp(δ).
We define the second Yamabe invariant with singularities as the infimum of the
second eigenvalue of the singular Yamabe operator over a generalized class of
conformal metrics to g and of volume 1. We show that this operator is attained by
a generalized metric, we deduce nodal solutions to a Yamabe type equation with
singularities.

Dedicated to the memory of T. Aubin.

1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. The
problem of finding a metric conformal to the original one with constant
scalar curvature was first formulated by Yamabe ([9]) and a variational
method was initiated by this latter in an attempt to solve the problem.
Unfortunately or fortunately a serious gap in the Yamabe problem was
pointed out by Trudinger who addressed the question in the case of non
positive scalar curvature ([9]). Aubin ([2]) solved the problem for arbitrary
non locally conformally flat manifolds of dimension n ≥ 6. Finally Shoen
([8]) solved completely the problem using the positive-mass theorem found
previously by Shoen himself and Yau. The method to solve the Yamabe
problem could be described as follows: let u be a smooth positive function
and let g = uN−2g be a conformal metric where N = 2n/(n− 2). Up to a
multiplying constant, the following equation is satisfied

Lg(u) = Sg̃|u|N−2u

Keywords: Second Yamabe invariant, singularities, Critical Sobolev growth.
Math. classification: 58J05.
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where
Lg = 4(n− 1)

n− 2 ∆ + Sg

and Sg denotes the scalar curvature of g. Lg is conformally invariant
called the conformal operator. Consequently, solving the Yamabe prob-
lem is equivalent to finding a smooth positive solution to the equation

Lg(u) = kuN−1 (1)
where k is a constant.

In order to obtain solutions to this equation, Yamabe defined the quan-
tity

µ (M, g) = inf
u∈C∞(M), u>0

Y (u)

where

Y (u) =
∫
M

(
4(n−1)
n−2 |∇u|

2 + Sgu
2
)
dvg( ∫

M |u|Ndvg
)2/N .

µ(M, g) is called the Yamabe invariant, and Y the Yamabe functional. In
the sequel we write µ instead of µ (M, g). Writing the Euler-Lagrange equa-
tion associated to Y , we see that there exists a one to one correspondence
between critical points of Y and solutions of equation (1). In particular,
if u is a positive smooth function such that Y (u) = µ, then u is a solution
of equation (1) and g = u(N−2)g is metric of constant scalar curvature.
The key point to solve the Yamabe problem is the following fundamental
results due to Aubin ([2]). Let Sn be the unit euclidean sphere.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3. If µ (M, g) < µ(Sn), then there exists a positive smooth
solution u such that Y (u) = µ (M, g).

This strict inequality µ (M, g) < µ(Sn) avoids concentration phenom-
ena. Explicitly µ(Sn) = n(n − 1)ω2/n

n where ωn stands for the volume of
Sn.

Theorem 1.2. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3. Then

µ (M, g) ≤ µ(Sn).
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The second Yamabe invariant with singularities

Moreover, the equality holds if and only if (M, g) is conformally diffeo-
morphic to the sphere Sn.

Amman and Humbert ([1]) defined the second Yamabe invariant as
the infimum of the second eigenvalue of the Yamabe operator over the
conformal class of the metric g with volume 1. Their method consists in
considering the spectrum of the operator Lg

spec(Lg) = {λ1,g, λ2,g . . .}

where the eigenvalues λ1,g < λ2,g . . . appear with their multiplicities. The
variational characterization of λ1,g is given by

λ1,g = inf
u∈C∞(M), u>0

∫
M

(
4(n−1)
n−2 |∇u|

2 + Sgu
2
)
dvg∫

M u2dvg
.

Then they defined the kth Yamabe invariant with k ∈ N?, by

µk = inf
g∈[g]

λk,gV ol(M, g̃)2/n

where
[g] = {uN−2g, u ∈ C∞ (M) , u > 0}.

With these notations µ1 is the Yamabe invariant. They studied the second
Yamabe invariant µ2, they found that contrary to the Yamabe invariant,
µ2 cannot be attained by a regular metric. In other words, there does not
exist g ∈ [g] , such that

µ2 = λ2,gV ol(M, g̃)2/n .

In order to find minimizers, they enlarged the conformal class to a larger
one. A generalized metric is the one of the form g = uN−2g , which is not
necessarily positive and smooth, but only u ∈ LN (M), u ≥ 0, u 6= 0 and
where N = 2n/ (n− 2). The definitions of λ2,g and of V ol(M, g)2/ncan be
extended to generalized metrics. The key points to solve this problem is
the following theorems ([1]).

Theorem 1.3. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3, then µ2 is attained by a generalized metric in the following
cases.

µ > 0, µ2 <
[
(µn/2 + (µ(Sn))n/2

]2/n
149
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and
µ = 0, µ2 < µ(Sn)

Theorem 1.4. The assumptions of the last theorem are satisfied in the
following cases

If (M, g) in not locally conformally flat and, n ≥ 11 and µ > 0
If (M, g) in not locally conformally flat and, µ = 0 and n ≥ 9.

Theorem 1.5. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3, assume that µ2 is attained by a generalized metric g̃ = uN−2g
then there exists a nodal solution w ∈ C2,α(M) of equation

Lg(w) = µ2|u|N−2w

such that
|w| = u

where α ≤ N − 2.

Recently F.Madani studied (see [6]) the Yamabe problem with singu-
larities when the metric g admits a finite number of points with singular-
ities and is smooth outside these points. Let (M, g) be a compact Rie-
mannian manifold of dimension n ≥ 3, assume that g is a metric in
the Sobolev space Hp

2 (M,T ∗M ⊗ T ∗M) with p > n
2 and there exist a

point P ∈ M and δ > 0 such that g is smooth in the ball Bp(δ), and let
(H) be these assumptions. By Sobolev’s embedding, we have for p > n

2 ,
Hp

2 (M,T ∗M ⊗T ∗M) ⊂ C1−[n/p],β (M,T ∗M ⊗ T ∗M), where [n/p] denotes
the entire part of n/p. Hence the metric satisfying assumption (H) is
of class C1−

[
n
p

]
,β with β ∈ (0, 1) provided that p > n. The Christoffels

symbols belong to Hp
1 (M) ( to Co (M) in case p > n), the Riemann-

ian curvature tensor, the Ricci tensor and scalar curvature are in Lp(M).
F. Madani proved under the assumption (H) the existence of a metric
g = uN−2g conformal to g such that u ∈ Hp

2 (M), u > 0 and the scalar
curvature Sg of g is constant and (M, g) is not conformal to the round
sphere. Madani proceeded as follows: let u ∈ Hp

2 (M), u > 0 be a function
and g = uN−2g a particular conformal metric where N = 2n/(n − 2).
Then, multiplying u by a constant, the following equation is satisfied

Lgu = n− 2
4(n− 1)Sg̃|u|

N−2u
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where
Lg = ∆g + n− 2

4(n− 1)Sg

and the scalar curvature Sg is in Lp(M). Moreover Lg is weakly confor-
mally invariant hence solving the singular Yamabe problem is equivalent
to finding a positive solution u ∈ Hp

2 (M) of

Lgu = k|u|N−2u (2)

where k is a constant. In order to obtain solutions of equation (2) we define
the quantity

µ = inf
u∈Hp

2 (M),u>0
Y (u)

where

Y (u) =
∫
M

(
|∇u|2 + (n−2)

4(n−1)Sgu
2
)
dvg

(
∫
M |u|Ndvg)2/N .

µ is called the Yamabe invariant with singularities. Writing the Euler-
Lagrange equation associated to Y , we see that there exists a one to one
correspondence between critical points of Y and solutions of equation (2).
In particular, if u ∈ Hp

2 (M) is a positive function which minimizes Y ,
then u is a solution of equation (2) and g = uN−2g is a metric of constant
scalar curvature and µ is attained by a particular conformal metric. The
key points to solve the above problem are the following theorems ([6]).

Theorem 1.6. If p > n/2 and µ < K−2then equation 2 admits a positive
solution u ∈ Hp

2 (M) ⊂ C1−[n/p],β(M) ; [n/p] is the integer part of n/p,
β ∈ (0, 1) which minimizes Y , where K2 = 4

n(n−1)ω
−2/n
n with ωn denotes

the volume of Sn. If p > n , then u ∈ Hp
2 (M) ⊂ C1 (M).

Theorem 1.7. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3. g is a metric which satisfies the assumption (H). If (M, g) is
not conformal to the sphere Sn with the standard Riemannian structure
then

µ < K−2

Theorem 1.8. Let (M, g) be a n-dimensional compact Riemannian man-
ifold. If u ≥ 0 is a non trivial weak solution in H2

1 (M) of equation
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∆u + hu = 0, with h ∈ Lp(M) and p > n/2, then u ∈ C1−[n/p],β and
u > 0; [n/p] is the integer part of n/pand β ∈ (0, 1).

Denote by

LN+ (M) =
{
u ∈ LN (M) : u ≥ 0, u 6= 0

}
.

For regularity argument we need the following results

Lemma 1.9. Let u ∈ LN+ (M) and v ∈ H2
1 (M) a weak solution to Lg(v) =

uN−2v, then
v ∈ LN+ε(M)

for some ε > 0.

The proof is the same as in ([6]) with some modifications. As a conse-
quence of Lemma 7, v ∈ Ls(M), ∀s ≥ 1.

Proposition 1.10. If g ∈ Hp
2 (M,T ∗M ⊗ T ∗M) is a Riemannian metric

on M with p > n/2. If g = uN−2g is a conformal metric to g such that
u ∈ Hp

2 (M), u > 0 then Lg is weakly conformally invariant, which means
that ∀v ∈ H2

1 (M), |u|N−1Lg(v) = Lg(uv)weakly. Moreover if µ > 0, then
Lg is coercive and invertible.

In this paper, let (M, g) be a compact Riemannian manifold of di-
mension n ≥ 3. We suppose that g is a metric in the Sobolev space
Hp

2 (M,T ∗M ⊗ T ∗M) with p > n/2 and there exist a point P ∈ M and
δ > 0 such that g is smooth in the ball BP (δ) and we call these assump-
tions the condition (H).

In the smooth case the operator Lg is an elliptic operator on M self-
adjoint, and has a discrete spectrum Spec(Lg) = {λ1,g , λ2,g, . . .}, where
the eigenvalues λ1,g < λ2,g . . . appear with their multiplicities. These prop-
erties remain valid also in the case where Sg ∈ Lp (M). The variational
characterization of λ1,g is given by

λ1,g = inf
u∈H2

1 ,u>0

∫
M

(
|∇u|2 + (n−2)

4(n−1)Sgu
2
)
dvg∫

M u2dvg

Let [g] = {uN−2g : u ∈ Hp
2 and u > 0}, Let k ∈ N∗, we define the kth

Yamabe invariant with singularities µk as
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The second Yamabe invariant with singularities

µk = inf
g∈[g]

λk,gV ol(M, g̃)2/n

with these notations, µ1 is the first Yamabe invariant with singularities.
In this work we are concerned with µ2. In order to find minimizers to µ2

we extend the conformal class to a larger one consisting of metrics of the
form g = uN−2g where u is no longer necessarily in Hp

2 (M) and positive
butu ∈ LN+ (M) =

{
LN (M), u ≥ 0, u 6= 0

}
such metrics will be called for

brevity generalized metrics. First we are going to show that if the singular
Yamabe invariant µ ≥ 0 then µ1 it is exactly µ next we consider µ2 and
show that µ2 is attained by a conformal generalized metric.

Our main results state as follows:

Theorem 1.11. Let (M, g) be a compact Riemannian manifold of di-
mension n ≥ 3. We suppose that g is a metric in the Sobolev space
Hp

2 (M,T ∗M ⊗ T ∗M) with p > n/2. If there exist a pointP ∈ M and
δ > 0 such that g is smooth in the ball BP (δ), then

µ1 = µ.

Theorem 1.12. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3, we suppose that g is a metric in the Sobolev space

Hp
2 (M,T ∗M ⊗ T ∗M) with p > n/2.

There exist a point P ∈ M and δ > 0 such that g is smooth in the ball
BP (δ). Assume that µ2 is attained by a metric g = uN−2g where u ∈
LN+ (M), then there exist a nodal solution w ∈ C1−[n/p],β (M), β ∈ (0, 1),
of equation

Lgw = µ2u
N−2w.

Moreover there exist real numbers a, b > 0 such that
u = aw+ + bw−

with w+ = sup(w, 0) and w− = sup(−w, 0) .

Theorem 1.13. Let (M, g) be a compact Riemannian manifold of dimen-
sion n ≥ 3, suppose that g is a metric in the Sobolev space Hp

2 (M,T ∗M⊗
T ∗M) with p > n/2. There exist a point P ∈ M and δ > 0 such that g
is smooth in the ball BP (δ) then µ2 is attained by a generalized metric in
the following cases:
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If (M, g) is not locally conformally flat and, n ≥ 11 and µ > 0
If (M, g) is not locally conformally flat and, µ = 0 and n ≥ 9.

2. Generalized metrics and the Euler-Lagrange equation

Let
LN+ (M) =

{
u ∈ LN+ (M): u ≥ 0, u 6= 0

}
where N = 2n

n−2 .
As in ([1])

Definition 2.1. For all u ∈ LN+ (M), we define Gruk (H2
1 (M)) to be the

set of all k−dimensional subspaces of H2
1 (M) with span(v1, v2, ..., vk) ∈

Gruk (H2
1 (M)) if and only if v1, v2, ..., vk are linearly independent on M −

u−1(0).

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. For
a generalized metricg conformal to g, we define

λk,g = inf
V ∈Gru

k
(H2

1 (M))
sup
v∈V

∫
M vLg(v)dvg∫
M |u|N−2v2dvg

.

We quote the following regularity theorem

Theorem 2.2. [7] On a n -dimensional compact Riemannian manifold
(M, g), if u ≥ 0 is a non trivial weak solution in H2

1 (M) of the equation

∆u+ hu = cuN−1

with h ∈ Lp(M) and p > n/2, then

u ∈ Hp
2 (M) ⊂ C1−[n/p],β(M)

and u > 0, where [n/p] denotes the integer part of n/p and β ∈ (0, 1).

Proposition 2.3. Let (vm) be a sequence in H2
1 (M) such that vm → v

strongly in L2 (M), then for all any u ∈ LN+ (M)∫
M
uN−2(v2 − v2

m)dvg → 0.

Proof. The proof is the same as in ([3]). �
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Proposition 2.4. If µ > 0, then for all u ∈ LN+ (M), there exist two
functions v, w in H2

1 (M) with v ≥ 0 satisfying in the weak sense the
equations

Lgv = λ1,gu
N−2v (7)

and
Lgw = λ2,gu

N−2w (8)
Moreover we can choose v and w such that∫

M
uN−2w2dvg =

∫
M
uN−2v2dvg = 1 and

∫
M
uN−2wvdvg = 0. (9)

Proof. Let (vm)m be a minimizing sequence for λ1,g̃ i.e. a sequence vm ∈
H2

1 (M) such that

lim
m

∫
M vmLg(vm)dvg∫
M |u|N−2v2

mdvg
= λ1,g̃

It is well know that (|vm|)m is also minimizing sequence. Hence we can
assume that vm ≥ 0. We normalize (vm)m by∫

M
|u|N−2v2

mdvg = 1.

Now by the fact that Lg is coercive

c‖vm‖H2
1
≤
∫
M
vmLg(vm)dvg ≤ λ1,g̃ + 1.

(vm)m is bounded inH2
1 (M) and after restriction to a subsequence we may

assume that there exist v ∈ H2
1 (M), v ≥ 0 such that vm → v weakly in

H2
1 (M), strongly in L2 (M) and almost everywhere in M , then v satisfies

in the sense of distributions
Lgv = λ1,gu

N−2v.

If u ∈ Hp
2 (M) ⊂ C1−

[
n
p

]
,β(M) then∫

M
uN−2(v2 − v2

m)dvg → 0

and ∫
M
uN−2v2dvg = 1.

Then v is not trivial and is a nonnegative minimizer of λ1,g, by Lemma7
h = Sg − λ1,gu

N−2 ∈ Lp(M)
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and by Theorem 1.8
v ∈ C1−

[
n
p

]
,β (M)

and
v > 0.

If u ∈ LN+ (M), by Proposition 2.3 , we get∫
M
uN−2(v2 − v2

m)dvg → 0
so ∫

M
uN−2v2dvg = 1.

v is a non negative minimizer in H2
1 (M) of λ1,g such that∫

M
uN−2v2dvg = 1.

Now consider the set

E = {w ∈ H2
1 (M): such that u

N−2
2 w 6= 0and

∫
M
uN−2wvdvg = 0}.

Obviously E is not empty and define

λ′2,g = inf
w∈E

∫
M wLg(w)dvg∫
M |u|N−2w2dvg

.

Let (wm) be a minimizing sequence for λ′2,g i.e. a sequence wm ∈ E such
that

lim
m

∫
M wmLg(wm)dvg∫
M |u|N−2w2

mdvg
= λ′2,g.

The same arguments lead to a minimizer w to λ′2,gwith
∫
M uN−2w2 = 1.

Now writing∫
M
uN−2wvdvg =

∫
M
uN−2v(w − wm)dvg +

∫
M
uN−2wmvdvg

and taking account of
∫
M uN−2wmvdvg = 0 and the fact that wm → w

weakly in LN (M) and since uN−2v ∈ L
N

N−1 (M), we infer that∫
M
uN−2wvdvg = 0.

Hence (8) and (9) are satisfied with λ′2,g instead of λ2,g. �
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Proposition 2.5. We have
λ′2,g = λ2,g.

.

Proof. The proof is the same as in ([3]) so we omit it. �

Remark 2.6. If p > n then u ∈ Hp
2 (M) ⊂ C1 (M), by Theorem 9, v and

w ∈ C1 (M) with v > 0.

Remark 2.7. If p > n then u ∈ Hp
2 (M) ⊂ C1 (M) and λ2,g = λ1,g, we

see that |w| is a minimizer for the functional associated to λ1,g, then |w|
satisfies the same equation as v and by Theorem 9 we get |w| > 0, this
contradicts relation (9), necessarily

λ2,g > λ1,g.

3. Variational characterization and existence of µ1

In this section we need the following Sobolev’s inequality (see [5])

Theorem 3.1. Let (M, g) be a compact n -dimensional Riemannian man-
ifold. For any ε > 0, there exists A(ε) > 0 such that ∀u ∈ H2

1 (M),

‖u‖2N ≤ (K2 + ε)‖∇u‖22 +A(ε)‖u‖22

where N = 2n/(n − 4) and K2 = 4/(n(n − 2)) ω
−2
n
n . ωn is the volume of

the round sphere Sn.

Let [g] = {uN−2g : u ∈ Hp
2 (M) and u > 0}, we define the first singular

Yamabe invariant µ1 as

µ1 = inf
g∈[g]

λ1,gV ol(M, g̃)2/n

then we get

µ1 = inf
u∈Hp

2 ,V ∈Gr
u
1 (H2

1 )
sup
v∈V

∫
M vLg(v)dvg∫
M |u|N−2v2dvg

(
∫
M
uNdvg)

2
n .

Lemma 3.2. We have
µ1 ≤ µ < K−2.

.
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Proof. If p ≥ 2n/(n+ 2), the embedding Hp
2 (M) ⊂ H2

1 (M) is true, so

µ1 = inf
u∈Hp

2 ,V ∈Gr
u
1 (H2

1 (M))
sup
v∈V

∫
M vLg(v)dvg∫
M |u|N−2v2dvg

(
∫
M
uNdvg)

2
n

≤ inf
u∈Hp

2 ,V ∈Gr
u
1 (Hp

2 (M))
sup
v∈V

∫
M vLg(v)dvg∫
M |u|N−2v2dvg

(
∫
M
uNdvg)

2
n .

in particular for p > n
2 and u = v we get

µ1 ≤ inf
v∈HP

2 ,V ∈Gr
u
1 (HP

2 (M))
sup
v∈V

∫
M vLg(v)dvg∫
M |v|N−2v2dvg

(
∫
M
vNdvg)

2
n = µ

i.e
µ1 ≤ µ < K−2.

�

Theorem 3.3. If µ > 0, there exits conform metric g = uN−2g which
minimizes µ1.
Proof. The proof will take several steps.

Step 1: We study a sequence of metrics gm = uN−2
m g with um ∈

Hp
2 (M), um > 0 which minimize µ1 i.e. a sequence of metrics

such that

µ1 = lim
m
λ1,m(V ol(M, gm)2/n.

Without loss of generality, we may assume that V ol(M, gm) = 1
i.e. ∫

M
uNmdvg = 1.

In particular, the sequence of functions um is bounded in LN (M)
and there exists u ∈ LN (M), u ≥ 0 such that um → u weakly in
LN (M). We are going to prove that the generalized metric uN−2g
minimizes µ1. Proposition 2.4 implies the existence of a sequence
(vm) in H2

1 (M), vm > 0 such that

Lg(vm) = λ1,mu
N−2
m vm

and ∫
M
uN−2
m v2

mdvg = 1.
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now since µ > 0, by Proposition 1.10, Lg is coercive and we infer
that

c‖vm‖H2
1
≤
∫
M
vmLg(vm)dvg = λ1,m ≤ µ1 + 1.

The sequence (vm)m is bounded in H2
1 (M), we can find v ∈

H2
1 (M), v ≥ 0 such that vm → v weakly in H2

1 (M). Together
with the weak convergence of (um)m, we obtain in the sense of
distributions

Lg(v) = µ1u
N−2v.

Step 2: Now we are going to show that vm → v strongly in H2
1 (M).

We put
zm = vm − v

then zm → 0 weakly in H2
1 (M) and strongly in Lq (M) with q <

N , and writing

∫
M
|∇vm|2 dvg =

∫
M
|∇zm|2 dvg +

∫
M
|∇v|2 dvg + 2

∫
M
∇zm∇vdvg

we see that∫
M
|∇vm|2 dvg =

∫
M
|∇zm|2 dvg +

∫
M
|∇v|2 dvg + o(1).

Now because of 2p/(p− 1) < N , we have∫
M

n− 2
4(n− 1)Sg(vm − v)2dvg ≤

n− 2
4(n− 1)‖Sg‖p‖vm − v‖

2
2p

p−1
→ 0

so ∫
M

n− 2
4(n− 1)Sgvm

2dvg =
∫
M

n− 2
4(n− 1)Sgv

2dvg + o(1)

and

∫
M
|∇vm|2 dvg +

∫
M

n− 2
4(n− 1)Sg(vm)2dvg

=
∫
M
|∇zm|2 dvg +

∫
M
|∇v|2 dvg +

∫
M

n− 2
4(n− 1)Sg(v)2dvg + o(1).
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Then∫
M
vmLgvmdvg

=
∫
M
|∇zm|2 dvg +

∫
M
|∇v|2 dvg +

∫
M

n− 2
4(n− 1)Sgv

2dvg + o(1)

And by the definition of µ and Lemma 3.2 we get∫
M
|∇v|2 dvg+

∫
M

n− 2
4(n− 1)Sg(v)2dvg ≥ µ(

∫
M
vNdvg)

2
N ≥ µ1(

∫
M
vNdvg)

2
N

then

∫
M
vmLg(vm)dvg ≥

∫
M
|∇zm|2 dvg + µ1(

∫
M
vNdvg)

2
N + o(1).

And since ∫
M
vmLg(vm)dvg = λ1,m ≤ µ1 + o(1)

and ∫
M
|∇zm|2 dvg + µ1(

∫
M
vNdvg)

2
N ≤ µ1 + o(1)

i.e
µ1‖v‖2N + ‖∇zm‖22 ≤ µ1 + o(1) (10)

Now by Brézis-Lieb lemma ([4]) , we get

lim
m

∫
M

(
vNm + zNm

)
dvg =

∫
M
vNdvg

i.e.
lim
m
‖vm‖NN − ‖zm‖NN = ‖v‖NN .

Hence
‖vm‖NN + o(1) = ‖zm‖NN + ‖v‖NN .

By Hölder’s inequality and
∫
M uN−2

m v2
mdvg = 1, we get

‖vm‖NN ≥ 1
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i.e. ∫
M

(vN + zNm )dvg =
∫
M
vNmdvg + o(1) ≥ 1 + o(1).

Then (∫
M
vNdvg

) 2
N

+
(∫

M
zNmdvg

) 2
N

≥ 1 + o(1)

i.e.

‖zm‖2N + ‖v‖2N ≥ 1 + o(1).

Now by Theorem 3.1 and the fact zm → 0 strongly in L2 (M), we
get

‖zm‖2N ≤ (K2 + ε)‖∇zm‖22 + o(1)

1 + o(1) ≤ ‖zm‖2N + ‖v‖2N ≤ ‖v‖2N + (K2 + ε)‖∇zm‖22 + o(1).

So we deduce

1 + o(1) ≤ ‖v‖2N + (K2 + ε)‖∇zm‖22 + o(1)

and from inequality (10), we get

‖∇zm‖22 + µ1‖v‖2N ≤ µ1((K2 + ε)‖∇zm‖22 + ‖v‖2N ) + o(1).

So if µ1K
2 < 1, we get

(1− µ1(K2 + ε))‖∇zm‖22) ≤ o(1)

i.e. vm → v strongly in H2
1 (M).
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Step 3: We have

lim
m

∫
M

(
uN−2
m v2

m − uN−2v2 + uN−2
m v2 − uN−2

m v2
)
dvg

= lim
m

∫
M

(
uN−2
m (v2

m − v2) + (uN−2
m − uN−2)v2

)
dvg.

Now since um → u a.e. so does uN−2
m → uN−2 and

∫
M uN−2

m dvg ≤ c,

hence uN−2
m is bounded in LN/(N−2) (M) and up to a subsequence

uN−2
m → u N−2 weakly in LN/(N−2) (M). Since v2 ∈ L

N
2 (M), we

have
lim
m

∫
M

(uN−2
m − uN−2)v2dvg = 0

and by Hölder’s inequality

lim
m

∫
M
uN−2
m (vm − v)2dvg

≤ (
∫
M
uNmdvg)(N−2)/N (

∫
M
|vm − v|N dvg)

2
N ≤ 0.

By the strong convergence of (vm) in LN (M), we get∫
M
uN−2v2dvg = 1,

then v and u are non trivial functions.

Step 4: Let u = av ∈ LN+ (M) with a > 0 a constant such that∫
M uNdvg = 1 with v a solution of

Lg(v) = µ1u
N−2v

with the constraint∫
M
uN−2v2dvg = 1.

We claim that u = v; indeed,
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µ1 ≤
∫
M vLg(v)dvg∫
M uN−2v2dvg

≤
∫
M vLg(v)dvg∫

M (av)N−2v2dvg
= a2µ1

∫
M uN−2v2dvg∫

M uN−2(av)2dvg
and Hölder’s inequality lead

≤ µ1

∫
M

(u)N−2(av)2dvg

≤ µ1(
∫
M

(u)N−2 N
N−2 )

N−2
N (

∫
M

(av)2 N
2 dvg)

2
N ≤ µ1.

And since the equality in Hölder’s inequality holds if
u = u = av

then a = 1 and
u = v.

Then v satisfies Lgv = µ1v
N−1 , by Theorem 2.2 we get v = u ∈

Hp
2 (M) ⊂ C1−

[
n
p

]
,β (M) with β ∈ (0, 1) and v = u > 0 ,

Resuming, we have

Lg(v) = µ1v
N−1,

∫
M
vNdvg = 1 and v = u ∈ Hp

2 (M) ⊂ C1−
[

n
p

]
,β (M)

so the metric g̃ = uN−2g minimizes µ1.

�

4. Yamabe conformal invariant with singularities

Theorem 4.1. If µ ≥ 0, then µ1 = µ

Proof. Step 1: If µ > 0. Let v such that Lg(v) = µ1v
N−1 and∫

M vNdvg = 1 then

µ1 =
∫
M
vLg(v)dvg ≥ c‖v‖H2

1

and v in non trivial function then µ1 > 0. On the other hand
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µ = inf
∫
M vLg(v)dvg

(
∫
M vNdvg)

2
N

≤
∫
M
vLg(v)dvg = µ1

and by Lemma 3.2 , we get

µ1 = µ

Step 2: If µ = 0, Lemma 3.2 implies that µ1 ≤ 0 , hence

µ1 = 0.

�

5. Variational characterization of µ2

Let [g] = {uN−2g, u ∈ Hp
2 (M) and u > 0}, we define the second Yamabe

invariant µ2 as

µ2 = inf
g∈[g]

λ2,gV ol(M, g)2/n

or more explicitly

µ2 = inf
u∈HP

2 ,V ∈Gr
u
2 (H2

1 (M))
sup
v∈V

∫
M vLg(v)dvg∫
M |u|N−2v2dvg

(
∫
M
uNdvg)

2
n

Theorem 5.1 ([1]). On a compact Riemannian manifold (M, g) of di-
mension n ≥ 3, we have for all v ∈ H2

1 (M)and for all u ∈ LN+ (M)

2
2
n

∫
M
|u|N−2v2dvg ≤ (K2

∫
M
|∇v|2dvg +

∫
M
B0v

2dvg)(
∫
M
uNdvg)

2
n

Or

2
2
n

∫
M
|u|N−2v2dvg ≤ µ1(Sn)(

∫
M
Cn|∇v|2 +B0v

2dvg)(
∫
M
uNdvg)

2
n
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Theorem 5.2. ([1]) For any compact Riemannian manifold (M, g) of
dimension n ≥ 3, there exists B0 > 0 such that

µ1(Sn) = n(n− 1)ω2/n
n = inf

H2
1

∫
M

4(n−1)
(n−2) |∇u|

2 +B0u
2dvg

(
∫
M |u|Ndvg)2/N

where ωn is the volume of the unit round sphere
or

(
∫
M
|u|Ndvg)2/N ≤ K2

∫
M
|∇u|2dvg +

∫
M
B0u

2dvg

K2 = µ1(Sn)−1Cn and Cn = (4(n− 1))/(n− 2)

6. Properties of µ2

We know that gis smooth in the ball Bp(δ) by assumption (H), this as-
sumption is sufficient to prove that Aubin’s conjecture is valid. The case
(M, g) is not conformally flat in a neighborhood of the point P and n ≥ 6,
let η is a cut-off function with support in the ball Bp(2ε) and η = 1 in
Bp(ε), where 2ε ≤ δ and

vε(q) = ( ε

r2 + ε2 )
n−2

2

with r = d(p, q). We let uε = ηvε and define

Y (u) =
∫
M

(
|∇u|2 + n−2

4(n−1)Sgu
2
)
dvg

(
∫
M |u|Ndvg)2/N .

We obtain the following lemma
Lemma 6.1. ([1])

µ = Y (vε) ≤
{
{(K−2 − c|w(P )|2ε4 + 0(ε4) if n > 6
K−2 − c|w(P )|2ε4 log 1

ε + 0(ε4)ifn = 6
where |w(P )|is the norm of the Weyl tensor at the point P and c > 0.
Theorem 6.2. If (M, g) is not locally conformally flat and n ≥ 11 and
µ > 0 , we find

µ2 < ((µ
n
2 + (K−2)

n
2 )

2
n

and if µ = 0 , n ≥ 9 then
µ2 < K−2
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Proof. With the same method as in ([1]), this theorem follows from Lemma
6.1. �

7. Existence of a minimizer to µ2

Lemma 7.1. Assume that vm → v weakly in H2
1 (M), um → u weakly in

LN (M) and
∫
M um

N−2vm
2dvg = 1 then

∫
M
um

N−2(vm − v)2dvg = 1−
∫
M
uN−2v2dvg + o(1)

Proof. we have ∫
M
um

N−2(vm − v)2dvg

=
∫
M
um

N−2vm
2dvg +

∫
M
um

N−2v2dvg −
∫
M

2umN−2vmvdvg

= 1 +
∫
M
um

N−2v2dvg −
∫
M

2umN−2vmvdvg . (15)

Now
(
um

N−2
)
m

is bounded in L
N

N−2 (M) and umN−2 → uN−2a.e., then

um
N−2 → uN−2 weakly in L

N
N−2 (M) and ∀φ ∈ L

N
2 (M)∫

M
φum

N−2dvg →
∫
M
φuN−2dvg

in particular for φ = v2∫
M
v2um

N−2dvg →
∫
M
v2uN−2dvg.∫

M um
N−2vmdvg is bounded in L

N
N−1 (M), because of∫

M
um

N−2 N
N−1 v

N
N−1
m dvg ≤ (

∫
M
um

Ndvg)
N−2
N−1 (

∫
M
vNmdvg)

1
N−1

and um
N−2vm → uN−2v a.e., then um

N−2vm → uN−2v weakly in
L

N
N−1 (M).
Hence
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∫
M
um

N−2vmvdvg →
∫
M
uN−2v2dvg

and ∫
M
um

N−2(vm − v)2dvg = 1−
∫
M
uN−2v2dvg + o(1).

�

Theorem 7.2. If 1 − 2−
2
nK2µ2 > 0, then the generalized metric uN−2g

minimizes µ2

Proof. Step 1: We study a sequence of metrics gm = uN−2
m g with

um ∈ Hp
2 (M), um > 0 which minimizes the infimum in the defini-

tion of µ2 i.e. a sequence of metrics such that

µ2 = limλ2,m(V ol(M, gm)2/n.
Without loss generality, we may assume that V ol(M, gm) = 1 i.e.
that

∫
M uNmdvg = 1. In particular, the sequence of functions (um)m

is bounded in LN (M) and there exists u ∈ LN (M), u ≥ 0 such
that um → uweakly in LN . We are going to prove that the gener-
alized metric uN−2g minimizes µ2. Proposition 2.4, implies the
existence of vm, wm ∈ H2

1 (M), vm > 0 such that
Lg(vm) = λ1,mu

N−2
m vm

Lg(wm) = λ2,mu
N−2
m wm

And such that∫
M
uN−2
m v2

mdvg =
∫
M
uN−2
m w2

mdvg = 1,
∫
M
uN−2
m vmwmdvg = 0.

The sequence vm, wm is bounded in H2
1 (M), we can find v, w ∈

H2
1 (M), v ≥ 0 such that vm → v , wm → w weakly inH2

1 (M).Together
with the weak convergence of (um), we get in weak sense

Lg(v) = µ̂1u
N−2v

and
Lg(w) = µ2u

N−2w

where
µ̂1 = limλ1,m ≤ µ2.

167



M. Benalili & H. Boughazi

Step 2: Now we show vm → v , wm → w strongly in H2.
1 (M).

Applying Theorem 5.1 to the sequence vm − v, we get

∫
M
|um|N−2(vm − v)2dvg

≤ (2−
2
nK2

∫
M
|∇(vm − v)|2dvg +

∫
M
B0(vm − v)2dvg)(

∫
M
uNdvg)

2
n

and since vm → v strongly in L2(M) ,

∫
M
|um|N−2(vm − v)2dvg ≤ (2−

2
nK2

∫
M
|∇(vm − v)|2dvg + o(1)

≤ 2−
2
nK2

∫
M

(
|∇(vm)|2 + |∇v|2 − 2∇vm∇v

)
dvg + o(1).

By the weak convergence of (vm) ,
∫
M ∇vm∇vdvg =

∫
M |∇v|

2 dvg+
o(1)

∫
M
|um|N−2(vm − v)2dvg ≤ 2−

2
nK2

∫
M

(
|∇(vm)|2 − |∇v|2

)
dvg + o(1)

and since∫
M

n− 2
4(n− 1)Sgvm

2dvg =
∫
M

n− 2
4(n− 1)Sgv

2dvg + o(1)

we get

∫
M
|um|N−2(vm − v)2dvg

≤ 2−
2
nK2

∫
M

(
|∇(vm)|2 − |∇v|2

)
dvg+

∫
M

n− 2
4(n− 1)Sg(v

2
m−v2)dvg)+o(1)

≤ 2−
2
nK2

∫
M

(vmLg(vm)− vLg(v)) dvg + o(1)

≤ 2−
2
nK2(λ1,m − µ̂1

∫
M
uN−2v2dvg) + o(1)

By the fact µ̂1 = limλ1,m ≤ µ2
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≤ 2−
2
nK2µ2(1−

∫
M
uN−2v2dvg) + o(1)

Then

∫
M
|um|N−2(vm − v)2dvg ≤ 2−

2
nK2µ2(1−

∫
M
uN−2v2dvg) + o(1)

Now using the weak convergence of (vm) in H2
1 (M) and the weak

convergence of (um)in LN (M), we infer by Lemma 7.1 that

∫
M
|um|N−2(vm − v)2dvg = 1−

∫
M
uN−2v2dvg + o(1)

then

1−
∫
M
uN−2v2dvg ≤ 2−

2
nK2µ2(1−

∫
M
uN−2v2dvg) + o(1)

and

1− 2−
2
nK2µ2 ≤ (1− 2−

2
nK2µ2)

∫
M
uN−2v2dvg + o(1).

So if 1− 2−
2
nK2µ2 > 0 then∫

M
uN−2v2dvg ≥ 1.

and by Fatou’s lemma, we obtain

∫
M
uN−2v2dvg ≤ lim

∫
M
uN−2
m v2

mdvg = 1.

We find that ∫
M
uN−2v2dvg = 1. (16)

So u and v are not trivial.
Moreover∫
M
|∇(vm − v)|2 dvg =

∫
M

(
|∇(vm)|2 + |∇v|2 − 2∇vm∇v

)
dvg
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=
∫
M

(
|∇(vm)|2 − |∇v|2

)
dvg + o(1)

and since
∫
M Sg

(
vm

2 − v2) dvg = o(1), we get∫
M
|∇(vm − v)|2 dvg =

∫
M

(vmLg(vm)− vLg(v)) dvg + o(1)

≤ µ2(1−
∫
M
uN−2v2dvg) + o(1)

Then, by relation (16)

∫
M
|∇(vm − v)|2 dvg = o(1)

and vm → v strongly in H2
1 (M). The same argument holds with

(wm), hence wm → w strongly in H2
1 (M) and

∫
M uN−2w2dvg = 1.

To show that
∫
M uN−2vwdvg = 0, first writing and using Hölder’s

inequality, we get

∫
M

(
uN−2
m vmwm − uN−2vw

)
dvg =

∫
M

(
uN−2
m vmwm − uN−2

m vwm
)
dvg

+
∫
M

(
uN−2
m vwm − uN−2vw

)
dvg

=
∫
M
uN−2
m (vm − v)wmdvg +

∫
M

(
uN−2
m vwm − uN−2vw

)
dvg

=
∫
M
u

N−2
2

m wm[u
N−2

2
m (vm − v)]dvg +

∫
M

(
uN−2
m vwm − uN−2vw

)
dvg

≤
(∫

M
uN−2
m w2

mdvg

) 1
2
(∫

M
uN−2
m (vm − v)2dvg

) 1
2

+
∫
M

(
uN−2
m vwm − uN−2vw

)
dvg
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≤
(∫

M
uN−2
m (vm − v)2dvg

) 1
2

+
∫
M

(
uN−2
m vwm − uN−2vw

)
dvg

≤

(∫
M
u
N−2 N

N−2
m dvg

)N−2
N
(∫

M
|vm − v|N dvg

) 2
N

 1
2

+
∫
M

(
uN−2
m vwm − uN−2vw

)
dvg

≤
(∫

M
|vm − v|N dvg

) 1
N

+
∫
M

(
uN−2
m vwm − uN−2vw

)
dvg

≤
(∫

M
|vm − v|N dvg

) 1
N

+
∫
M

(
uN−2
m vwm − uN−2

m vw + uN−2
m vw − uN−2vw

)
dvg

≤
(∫

M
|vm − v|N dvg

) 1
N

+
∫
M

(
uN−2
m v(wm − w) + (uN−2

m − uN−2)vw
)
dvg

≤
(∫

M
|vm − v|N dvg

) 1
N

+
∫
M

(
(u

N−2
2

m v)(u
N−2

2
m (wm − w)) + (uN−2

m − uN−2)vw
)
dvg

≤
(∫

M
|vm − v|N dvg

) 1
N

+
(∫

M
uN−2
m v2dvg

) 1
2
(∫

M
uN−2
m (wm − w)2dvg

) 1
2

+
∫
M

(uN−2
m − uN−2)vwdvg
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≤
(∫

M
|vm − v|N dvg

) 1
N

+
(∫

M
uN−2
m v2dvg

) 1
2
(∫

M
|wm − w|)Ndvg

) 1
N

+
∫
M

(uN−2
m − uN−2)vwdvg.

Now noting that∫
M
uN−2
m v2dvg ≤ (

∫
M
uNmdvg)

N−2
2 (
∫
M
vNdvg)

2
N < +∞

and taking account of uN−2
m → uN−2 weakly in L

N
N−2 (M) and the

fact that vw ∈ L
N
2 (M), we deduce∫

M
(uN−2
m − uN−2)vwdvg → 0

hence ∫
M
uN−2vwdvg = 0.

Consequently the generalized metric uN−2g minimizes µ2.
�

Theorem 7.3. If µ2 < K−2, then generalized metric uN−2g minimizes
µ2

Proof. Step 1: We study a sequence of metrics gm = uN−2
m g with

um ∈ Hp
2 (M), um > 0 which attains µ2 i.e. a sequence of metrics

such that

µ2 = lim
m
λ2,m(V ol(M, gm)2/n .

Without loss of generality, we may assume that V ol(M, gm) = 1
i.e.

∫
M uNmdvg = 1. In particular, the sequence (um)m is bounded

in LN (M) and there exists u ∈ LN (M), u ≥ 0 such that um → u
weakly in LN (M).We are going to prove that the metric uN−2g
minimizes µ2. Proposition 2.4 and Theorem 1.8 imply the existence
of vm, wm ∈ C1−

[
n
p

]
,β, with β ∈ (0, 1) (M), vm > 0 such that

Lg(vm) = λ1,mu
N−2
m vm
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Lg(wm) = λ2,mu
N−2
m wm

and∫
M
uN−2
m v2

mdvg =
∫
M
uN−2
m w2

mdvg = 1,
∫
M
uN−2
m vmwmdvg = 0.

The sequences (vm)mand (wm)m are bounded in H2
1 (M), we can

find v, w ∈ H2
1 (M) with v ≥ 0 such that vm → v, wm → w weakly

in H2
1 (M). Together with the weak convergence of (um)m, we get

in the weak sense
Lg(v) = µ̂1u

N−2v

and
Lg(w) = µ2u

N−2w

where
µ̂1 = limλ1,m ≤ µ2.

Step 2: Now we are going to show that vm → v , wm → w strongly
in H2.

1 (M).
By Hölder’s inequality, Theorem 3.1, the strong convergence of
(vm) in L2. (M), we get∫

M
|um|N−2(vm − v)2dvg ≤ ‖vm − v‖2N ≤ K2‖∇(vm − v)‖22 + o(1)

≤ K2
∫
M

(
|∇(vm)|2 + |∇v|2 − 2∇vm∇v

)
dvg + o(1)

≤ K2
∫
M

(
|∇(vm)|2 − |∇v|2

)
dvg + o(1)

≤ K2
∫
M

(vmLg(vm)− vLg(v)) dvg + o(1)

≤ K2µ2(1−
∫
M
uN−2v2dvg) + o(1)

and with Lemma 7.1∫
M
|um|N−2(vm − v)2dvg = 1−

∫
M
uN−2v2dvg + o(1)
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then

1−
∫
M
uN−2v2dvg ≤ K2µ2(1−

∫
M
uN−2v2dvg) + o(1)

i.e
1−K2µ2 ≤ (1−K2µ2)

∫
M
uN−2v2dvg

so if 1−K2µ2 > 0 ,∫
M
uN−2v2dvg ≥ 1.

On the other hand since by Fatou’s lemma

∫
M
uN−2v2dvg ≤ lim

∫
M
uN−2
m v2

mdvg = 1.

Then ∫
M
uN−2v2dvg = 1.

and

∫
M
|∇(vm − v)|2 dvg = o(1)

Hence vm → v strongly in H2.
1 (M) ⊂ LN (M).

The same conclusion also holds for (wm)m.
�

Lemma 7.4. Let u ∈ LN (M) with
∫
M uNdvg = 1 and z , w nonnegative

functions in H2
1 (M)satisfying∫

M
wLg(w)dvg ≤ µ2

∫
M
uN−2w2dvg (20)

and ∫
M
zLg(z)dvg ≤ µ2

∫
M
uN−2z2dvg (21)

And suppose that (M − z−1(0))∩ (M −w−1(0)) has measure zero. Then u
is a linear combination of z and w and we have equality in (20) and (21).

Proof. The proof is the same as that of Aummann and Humbert in ([1]).
�
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Theorem 7.5. If a generalized metric uN−2g minimizes µ2, then there
exists a nodal solution w ∈ Hp

2 (M) ⊂ C1−[n/p],β (M)
of equation

Lg(w) = µ2u
N−2w (22)

More over there exista, b > 0 such that

u = aw+ + bw−

With w+ = sup(w, 0) and w− = sup(−w, 0) .

Proof. Step 1: Applying Lemma 7.4 to w+ = sup(w, 0) and w− =
sup(−w, 0), we get the existence of a, b > 0 such that

u = aw+ + bw−.

Now by Lemma 1.9, w+, w− ∈ L∞ (M) i.e. u ∈ L∞ (M) , uN−2 ∈
L∞ (M), then

h = Sg − µ2u
N−2 ∈ Lp (M)

and from Theorem 2.2, we obtain

w ∈ Hp
2 (M) ⊂ C1−[n/p],β (M) .

Step 2: If µ2 = µ1, we see that |w| is a minimizer to the functional
associated to µ1, then |w| satisfies the same equation as v and
Theorem 2.2 shows that |w| = w ∈ Hp

2 (M) ⊂ C1−[n/p],β (M)
that is |w| > 0 everywhere, which contradicts the condition (9) in
Proposition 2.4 , then

µ2 > µ1.

Step 3: The solution w of the equation (22) changes sign. Since if
it does not, we may assume that w ≥ 0, by step2 the inequal-
ity in (20) is strict and by Lemma 7.4 we have the equality: a
contradiction.

�

Remark 7.6. Step1 shows that u is not necessarily in Hp
2 (M) and by the

way the minimizing metric is not in Hp
2 (M,T ∗M ⊗ T ∗M) contrary to the

Yamabe invariant with singularities.
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