## ANNALES MATHÉMATIQUES



Mohammed Benalili \& Hichem Boughazi
The second Yamabe invariant with singularities
Volume 19, n ${ }^{\circ} 1$ (2012), p. 147-176.
[http://ambp.cedram.org/item?id=AMBP_2012__19_1_147_0](http://ambp.cedram.org/item?id=AMBP_2012__19_1_147_0)
© Annales mathématiques Blaise Pascal, 2012, tous droits réservés.
L'accès aux articles de la revue «Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

> Publication éditée par le laboratoire de mathématiques de l'université Blaise-Pascal, UMR 6620 du CNRS
> Clermont-Ferrand - France

## cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

# The second Yamabe invariant with singularities 

Mohammed Benalili<br>Hichem Boughazi


#### Abstract

Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$. We suppose that $g$ is a metric in the Sobolev space $H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right)$ with $p>\frac{n}{2}$ and there exist a point $P \in M$ and $\delta>0$ such that $g$ is smooth in the ball $B_{p}(\delta)$. We define the second Yamabe invariant with singularities as the infimum of the second eigenvalue of the singular Yamabe operator over a generalized class of conformal metrics to $g$ and of volume 1 . We show that this operator is attained by a generalized metric, we deduce nodal solutions to a Yamabe type equation with singularities.


Dedicated to the memory of T. Aubin.

## 1. Introduction

Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$. The problem of finding a metric conformal to the original one with constant scalar curvature was first formulated by Yamabe ([9]) and a variational method was initiated by this latter in an attempt to solve the problem. Unfortunately or fortunately a serious gap in the Yamabe problem was pointed out by Trudinger who addressed the question in the case of non positive scalar curvature ([9]). Aubin ([2]) solved the problem for arbitrary non locally conformally flat manifolds of dimension $n \geq 6$. Finally Shoen ([8]) solved completely the problem using the positive-mass theorem found previously by Shoen himself and Yau. The method to solve the Yamabe problem could be described as follows: let $u$ be a smooth positive function and let $\bar{g}=u^{N-2} g$ be a conformal metric where $N=2 n /(n-2)$. Up to a multiplying constant, the following equation is satisfied

$$
L_{g}(u)=S_{\tilde{g}}|u|^{N-2} u
$$

Keywords: Second Yamabe invariant, singularities, Critical Sobolev growth.
Math. classification: 58J05.

M. Benalili \& H. Boughazi

where

$$
L_{g}=\frac{4(n-1)}{n-2} \Delta+S_{g}
$$

and $S_{g}$ denotes the scalar curvature of $g . L_{g}$ is conformally invariant called the conformal operator. Consequently, solving the Yamabe problem is equivalent to finding a smooth positive solution to the equation

$$
\begin{equation*}
L_{g}(u)=k u^{N-1} \tag{1}
\end{equation*}
$$

where $k$ is a constant.
In order to obtain solutions to this equation, Yamabe defined the quantity

$$
\mu(M, g)=\inf _{u \in C^{\infty}(M), u>0} Y(u)
$$

where

$$
Y(u)=\frac{\int_{M}\left(\frac{4(n-1)}{n-2}|\nabla u|^{2}+S_{g} u^{2}\right) d v_{g}}{\left(\int_{M}|u|^{N} d v_{g}\right)^{2 / N}}
$$

$\mu(M, g)$ is called the Yamabe invariant, and $Y$ the Yamabe functional. In the sequel we write $\mu$ instead of $\mu(M, g)$. Writing the Euler-Lagrange equation associated to $Y$, we see that there exists a one to one correspondence between critical points of $Y$ and solutions of equation (1). In particular, if $u$ is a positive smooth function such that $Y(u)=\mu$, then $u$ is a solution of equation (1) and $\bar{g}=u^{(N-2)} g$ is metric of constant scalar curvature. The key point to solve the Yamabe problem is the following fundamental results due to Aubin ([2]). Let $S_{n}$ be the unit euclidean sphere.

Theorem 1.1. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$. If $\mu(M, g)<\mu\left(S_{n}\right)$, then there exists a positive smooth solution $u$ such that $Y(u)=\mu(M, g)$.

This strict inequality $\mu(M, g)<\mu\left(S_{n}\right)$ avoids concentration phenomena. Explicitly $\mu\left(S_{n}\right)=n(n-1) \omega_{n}^{2 / n}$ where $\omega_{n}$ stands for the volume of $S_{n}$.

Theorem 1.2. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$. Then

$$
\mu(M, g) \leq \mu\left(S_{n}\right)
$$

Moreover, the equality holds if and only if $(M, g)$ is conformally diffeomorphic to the sphere $S_{n}$.

Amman and Humbert ([1]) defined the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the conformal class of the metric $g$ with volume 1 . Their method consists in considering the spectrum of the operator $L_{g}$

$$
\operatorname{spec}\left(L_{g}\right)=\left\{\lambda_{1, g}, \lambda_{2, g} \ldots\right\}
$$

where the eigenvalues $\lambda_{1, g}<\lambda_{2, g} \ldots$ appear with their multiplicities. The variational characterization of $\lambda_{1, g}$ is given by

$$
\lambda_{1, g}=\inf _{u \in C^{\infty}(M), u>0} \frac{\int_{M}\left(\frac{4(n-1)}{n-2}|\nabla u|^{2}+S_{g} u^{2}\right) d v_{g}}{\int_{M} u^{2} d v_{g}} .
$$

Then they defined the $k^{t h}$ Yamabe invariant with $k \in \mathbb{N}^{\star}$, by

$$
\mu_{k}=\inf _{\bar{g} \in[g]} \lambda_{k, \bar{g}} \operatorname{Vol}(M, \tilde{g})^{2 / n}
$$

where

$$
[g]=\left\{u^{N-2} g, u \in C^{\infty}(M), u>0\right\}
$$

With these notations $\mu_{1}$ is the Yamabe invariant. They studied the second Yamabe invariant $\mu_{2}$, they found that contrary to the Yamabe invariant, $\mu_{2}$ cannot be attained by a regular metric. In other words, there does not exist $\bar{g} \in[g]$, such that

$$
\mu_{2}=\lambda_{2, \bar{g}} \operatorname{Vol}(M, \tilde{g})^{2 / n}
$$

In order to find minimizers, they enlarged the conformal class to a larger one. A generalized metric is the one of the form $\bar{g}=u^{N-2} g$, which is not necessarily positive and smooth, but only $u \in L^{N}(M), u \geq 0, u \neq 0$ and where $N=2 n /(n-2)$. The definitions of $\lambda_{2, \bar{g}}$ and of $\operatorname{Vol}(M, \bar{g})^{2 / n}$ can be extended to generalized metrics. The key points to solve this problem is the following theorems ([1]).

Theorem 1.3. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$, then $\mu_{2}$ is attained by a generalized metric in the following cases.

$$
\mu>0, \mu_{2}<\left[\left(\mu^{n / 2}+\left(\mu\left(S_{n}\right)\right)^{n / 2}\right]^{2 / n}\right.
$$

M. Benalili \& H. Boughazi

and

$$
\mu=0, \quad \mu_{2}<\mu\left(S_{n}\right)
$$

Theorem 1.4. The assumptions of the last theorem are satisfied in the following cases

If $(M, g)$ in not locally conformally flat and, $n \geq 11$ and $\mu>0$
If $(M, g)$ in not locally conformally flat and, $\mu=0$ and $n \geq 9$.
Theorem 1.5. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$, assume that $\mu_{2}$ is attained by a generalized metric $\tilde{g}=u^{N-2} g$ then there exists a nodal solution $w \in C^{2, \alpha}(M)$ of equation

$$
L_{g}(w)=\mu_{2}|u|^{N-2} w
$$

such that

$$
|w|=u
$$

where $\alpha \leq N-2$.

Recently F.Madani studied (see [6]) the Yamabe problem with singularities when the metric $g$ admits a finite number of points with singularities and is smooth outside these points. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$, assume that $g$ is a metric in the Sobolev space $H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right)$ with $p>\frac{n}{2}$ and there exist a point $P \in M$ and $\delta>0$ such that $g$ is smooth in the ball $B_{p}(\delta)$, and let $(H)$ be these assumptions. By Sobolev's embedding, we have for $p>\frac{n}{2}$, $H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right) \subset C^{1-[n / p], \beta}\left(M, T^{*} M \otimes T^{*} M\right)$, where $[n / p]$ denotes the entire part of $n / p$. Hence the metric satisfying assumption $(H)$ is of class $C^{1-\left[\frac{n}{p}\right], \beta}$ with $\beta \in(0,1)$ provided that $p>n$. The Christoffels symbols belong to $H_{1}^{p}(M)$ ( to $C^{o}(M)$ in case $p>n$ ), the Riemannian curvature tensor, the Ricci tensor and scalar curvature are in $L^{p}(M)$. F. Madani proved under the assumption $(H)$ the existence of a metric $\bar{g}=u^{N-2} g$ conformal to $g$ such that $u \in H_{2}^{p}(M), u>0$ and the scalar curvature $S_{\bar{g}}$ of $\bar{g}$ is constant and $(M, g)$ is not conformal to the round sphere. Madani proceeded as follows: let $u \in H_{2}^{p}(M), u>0$ be a function and $\bar{g}=u^{N-2} g$ a particular conformal metric where $N=2 n /(n-2)$. Then, multiplying $u$ by a constant, the following equation is satisfied

$$
L_{g} u=\frac{n-2}{4(n-1)} S_{\tilde{g}}|u|^{N-2} u
$$

where

$$
L_{g}=\Delta_{g}+\frac{n-2}{4(n-1)} S_{g}
$$

and the scalar curvature $S_{g}$ is in $L^{p}(M)$. Moreover $L_{g}$ is weakly conformally invariant hence solving the singular Yamabe problem is equivalent to finding a positive solution $u \in H_{2}^{p}(M)$ of

$$
\begin{equation*}
L_{g} u=k|u|^{N-2} u \tag{2}
\end{equation*}
$$

where $k$ is a constant. In order to obtain solutions of equation (2) we define the quantity

$$
\mu=\inf _{u \in H_{2}^{p}(M), u>0} Y(u)
$$

where

$$
Y(u)=\frac{\int_{M}\left(|\nabla u|^{2}+\frac{(n-2)}{4(n-1)} S_{g} u^{2}\right) d v_{g}}{\left(\int_{M}|u|^{N} d v_{g}\right)^{2 / N}}
$$

$\mu$ is called the Yamabe invariant with singularities. Writing the EulerLagrange equation associated to $Y$, we see that there exists a one to one correspondence between critical points of $Y$ and solutions of equation (2). In particular, if $u \in H_{2}^{p}(M)$ is a positive function which minimizes $Y$, then $u$ is a solution of equation (2) and $\bar{g}=u^{N-2} g$ is a metric of constant scalar curvature and $\mu$ is attained by a particular conformal metric. The key points to solve the above problem are the following theorems ([6]).

Theorem 1.6. If $p>n / 2$ and $\mu<K^{-2}$ then equation 2 admits a positive solution $u \in H_{2}^{p}(M) \subset C^{1-[n / p], \beta}(M) ;[n / p]$ is the integer part of $n / p$, $\beta \in(0,1)$ which minimizes $Y$, where $K^{2}=\frac{4}{n(n-1)} \omega_{n}^{-2 / n}$ with $\omega_{n}$ denotes the volume of $S_{n}$. If $p>n$, then $u \in H_{2}^{p}(M) \subset C^{1}(M)$.

Theorem 1.7. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3 . g$ is a metric which satisfies the assumption ( $H$ ). If $(M, g)$ is not conformal to the sphere $S_{n}$ with the standard Riemannian structure then

$$
\mu<K^{-2}
$$

Theorem 1.8. Let $(M, g)$ be a n-dimensional compact Riemannian manifold. If $u \geq 0$ is a non trivial weak solution in $H_{1}^{2}(M)$ of equation

M. Benalili \& H. Boughazi

$\Delta u+h u=0$, with $h \in L^{p}(M)$ and $p>n / 2$, then $u \in C^{1-[n / p], \beta}$ and $u>0 ;[n / p]$ is the integer part of $n /$ pand $\beta \in(0,1)$.

Denote by

$$
L_{+}^{N}(M)=\left\{u \in L^{N}(M): u \geq 0, u \neq 0\right\}
$$

For regularity argument we need the following results
Lemma 1.9. Let $u \in L_{+}^{N}(M)$ and $v \in H_{1}^{2}(M)$ a weak solution to $L_{g}(v)=$ $u^{N-2} v$, then

$$
v \in L^{N+\epsilon}(M)
$$

for some $\varepsilon>0$.
The proof is the same as in ([6]) with some modifications. As a consequence of Lemma $7, v \in L^{s}(M), \forall s \geq 1$.

Proposition 1.10. If $g \in H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right)$ is a Riemannian metric on $M$ with $p>n / 2$. If $\bar{g}=u^{N-2} g$ is a conformal metric to $g$ such that $u \in H_{2}^{p}(M), u>0$ then $L_{g}$ is weakly conformally invariant, which means that $\forall v \in H_{1}^{2}(M),|u|^{N-1} L_{\bar{g}}(v)=L_{g}(u v)$ weakly. Moreover if $\mu>0$, then $L_{g}$ is coercive and invertible.

In this paper, let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$. We suppose that $g$ is a metric in the Sobolev space $H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right)$ with $p>n / 2$ and there exist a point $P \in M$ and $\delta>0$ such that $g$ is smooth in the ball $B_{P}(\delta)$ and we call these assumptions the condition $(H)$.

In the smooth case the operator $L_{g}$ is an elliptic operator on $M$ selfadjoint, and has a discrete spectrum $\operatorname{Spec}\left(L_{g}\right)=\left\{\lambda_{1, g}, \lambda_{2, g}, \ldots\right\}$, where the eigenvalues $\lambda_{1, g}<\lambda_{2, g} \ldots$ appear with their multiplicities. These properties remain valid also in the case where $S_{g} \in L^{p}(M)$. The variational characterization of $\lambda_{1, g}$ is given by

$$
\lambda_{1, g}=\inf _{u \in H_{1}^{2}, u>0} \frac{\int_{M}\left(|\nabla u|^{2}+\frac{(n-2)}{4(n-1)} S_{g} u^{2}\right) d v_{g}}{\int_{M} u^{2} d v_{g}}
$$

Let $[g]=\left\{u^{N-2} g: u \in H_{2}^{p}\right.$ and $\left.u>0\right\}$, Let $k \in \mathbb{N}^{*}$, we define the $k^{t h}$ Yamabe invariant with singularities $\mu_{k}$ as

$$
\mu_{k}=\inf _{\bar{g} \in[g]} \lambda_{k, \bar{g}} \operatorname{Vol}(M, \tilde{g})^{2 / n}
$$

with these notations, $\mu_{1}$ is the first Yamabe invariant with singularities.
In this work we are concerned with $\mu_{2}$. In order to find minimizers to $\mu_{2}$ we extend the conformal class to a larger one consisting of metrics of the form $\bar{g}=u^{N-2} g$ where $u$ is no longer necessarily in $H_{2}^{p}(M)$ and positive but $u \in L_{+}^{N}(M)=\left\{L^{N}(M), u \geq 0, u \neq 0\right\}$ such metrics will be called for brevity generalized metrics. First we are going to show that if the singular Yamabe invariant $\mu \geq 0$ then $\mu_{1}$ it is exactly $\mu$ next we consider $\mu_{2}$ and show that $\mu_{2}$ is attained by a conformal generalized metric.

Our main results state as follows:
Theorem 1.11. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$. We suppose that $g$ is a metric in the Sobolev space $H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right)$ with $p>n / 2$. If there exist a point $P \in M$ and $\delta>0$ such that $g$ is smooth in the ball $B_{P}(\delta)$, then

$$
\mu_{1}=\mu
$$

Theorem 1.12. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$, we suppose that $g$ is a metric in the Sobolev space

$$
H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right) \text { with } p>n / 2
$$

There exist a point $P \in M$ and $\delta>0$ such that $g$ is smooth in the ball $B_{P}(\delta)$. Assume that $\mu_{2}$ is attained by a metric $\bar{g}=u^{N-2} g$ where $u \in$ $L_{+}^{N}(M)$, then there exist a nodal solution $w \in C^{1-[n / p], \beta}(M), \beta \in(0,1)$, of equation

$$
L_{g} w=\mu_{2} u^{N-2} w
$$

Moreover there exist real numbers $a, b>0$ such that

$$
u=a w_{+}+b w_{-}
$$

with $w_{+}=\sup (w, 0)$ and $w_{-}=\sup (-w, 0)$.
Theorem 1.13. Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$, suppose that $g$ is a metric in the Sobolev space $H_{2}^{p}\left(M, T^{*} M \otimes\right.$ $\left.T^{*} M\right)$ with $p>n / 2$. There exist a point $P \in M$ and $\delta>0$ such that $g$ is smooth in the ball $B_{P}(\delta)$ then $\mu_{2}$ is attained by a generalized metric in the following cases:

M. Benalili \& H. Boughazi

If $(M, g)$ is not locally conformally flat and, $n \geq 11$ and $\mu>0$
If $(M, g)$ is not locally conformally flat and, $\mu=0$ and $n \geq 9$.

## 2. Generalized metrics and the Euler-Lagrange equation

Let

$$
L_{+}^{N}(M)=\left\{u \in L_{+}^{N}(M): u \geq 0, u \neq 0\right\}
$$

where $N=\frac{2 n}{n-2}$.
As in ([1])
Definition 2.1. For all $u \in L_{+}^{N}(M)$, we define $G r_{k}^{u}\left(H_{1}^{2}(M)\right)$ to be the set of all $k$-dimensional subspaces of $H_{1}^{2}(M)$ with $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right) \in$ $G r_{k}^{u}\left(H_{1}^{2}(M)\right)$ if and only if $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent on $M-$ $u^{-1}(0)$.

Let $(M, g)$ be a compact Riemannian manifold of dimension $n \geq 3$. For a generalized metric $\bar{g}$ conformal to $g$, we define

$$
\lambda_{k, \bar{g}}=\inf _{V \in G r_{k}^{u}\left(H_{1}^{2}(M)\right)} \sup _{v \in V} \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M}|u|^{N-2} v^{2} d v_{g}}
$$

We quote the following regularity theorem
Theorem 2.2. [7] On a n-dimensional compact Riemannian manifold $(M, g)$, if $u \geq 0$ is a non trivial weak solution in $H_{1}^{2}(M)$ of the equation

$$
\Delta u+h u=c u^{N-1}
$$

with $h \in L^{p}(M)$ and $p>n / 2$, then

$$
u \in H_{2}^{p}(M) \subset C^{1-[n / p], \beta}(M)
$$

and $u>0$, where $[n / p]$ denotes the integer part of $n / p$ and $\beta \in(0,1)$.
Proposition 2.3. Let $\left(v_{m}\right)$ be a sequence in $H_{1}^{2}(M)$ such that $v_{m} \rightarrow v$ strongly in $L^{2}(M)$, then for all any $u \in L_{+}^{N}(M)$

$$
\int_{M} u^{N-2}\left(v^{2}-v_{m}^{2}\right) d v_{g} \rightarrow 0
$$

Proof. The proof is the same as in ([3]).

## The second Yamabe invariant with singularities

Proposition 2.4. If $\mu>0$, then for all $u \in L_{+}^{N}(M)$, there exist two functions $v, w$ in $H_{1}^{2}(M)$ with $v \geq 0$ satisfying in the weak sense the equations

$$
\begin{equation*}
L_{g} v=\lambda_{1, \bar{g}} u^{N-2} v \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{g} w=\lambda_{2, \bar{g}} u^{N-2} w \tag{8}
\end{equation*}
$$

Moreover we can choose $v$ and $w$ such that

$$
\begin{equation*}
\int_{M} u^{N-2} w^{2} d v_{g}=\int_{M} u^{N-2} v^{2} d v_{g}=1 \text { and } \int_{M} u^{N-2} w v d v_{g}=0 \tag{9}
\end{equation*}
$$

Proof. Let $\left(v_{m}\right)_{m}$ be a minimizing sequence for $\lambda_{1, \tilde{g}}$ i.e. a sequence $v_{m} \in$ $H_{1}^{2}(M)$ such that

$$
\lim _{m} \frac{\int_{M} v_{m} L_{g}\left(v_{m}\right) d v_{g}}{\int_{M}|u|^{N-2} v_{m}^{2} d v_{g}}=\lambda_{1, \tilde{g}}
$$

It is well know that $\left(\left|v_{m}\right|\right)_{m}$ is also minimizing sequence. Hence we can assume that $v_{m} \geq 0$. We normalize $\left(v_{m}\right)_{m}$ by

$$
\int_{M}|u|^{N-2} v_{m}^{2} d v_{g}=1
$$

Now by the fact that $L_{g}$ is coercive

$$
c\left\|v_{m}\right\|_{H_{1}^{2}} \leq \int_{M} v_{m} L_{g}\left(v_{m}\right) d v_{g} \leq \lambda_{1, \tilde{g}}+1
$$

$\left(v_{m}\right)_{m}$ is bounded in $H_{1}^{2}(M)$ and after restriction to a subsequence we may assume that there exist $v \in H_{1}^{2}(M), v \geq 0$ such that $v_{m} \rightarrow v$ weakly in $H_{1}^{2}(M)$, strongly in $L^{2}(M)$ and almost everywhere in $M$, then $v$ satisfies in the sense of distributions

$$
L_{g} v=\lambda_{1, \bar{g}} u^{N-2} v
$$

If $u \in H_{2}^{p}(M) \subset C^{1-\left[\frac{n}{p}\right], \beta}(M)$ then

$$
\int_{M} u^{N-2}\left(v^{2}-v_{m}^{2}\right) d v_{g} \rightarrow 0
$$

and

$$
\int_{M} u^{N-2} v^{2} d v_{g}=1
$$

Then $v$ is not trivial and is a nonnegative minimizer of $\lambda_{1, \bar{g}}$, by Lemma7

$$
h=S_{g}-\lambda_{1, \bar{g}} u^{N-2} \in L^{p}(M)
$$

## M. Benalili \& H. Boughazi

and by Theorem 1.8

$$
v \in C^{1-\left[\frac{n}{p}\right], \beta}(M)
$$

and

$$
v>0
$$

If $u \in L_{+}^{N}(M)$, by Proposition 2.3, we get

$$
\int_{M} u^{N-2}\left(v^{2}-v_{m}^{2}\right) d v_{g} \rightarrow 0
$$

so

$$
\int_{M} u^{N-2} v^{2} d v_{g}=1
$$

$v$ is a non negative minimizer in $H_{1}^{2}(M)$ of $\lambda_{1, \bar{g}}$ such that

$$
\int_{M} u^{N-2} v^{2} d v_{g}=1
$$

Now consider the set

$$
E=\left\{w \in H_{1}^{2}(M): \text { such that } u^{\frac{N-2}{2}} w \neq 0 \text { and } \int_{M} u^{N-2} w v d v_{g}=0\right\}
$$

Obviously $E$ is not empty and define

$$
\lambda_{2, g}^{\prime}=\inf _{w \in E} \frac{\int_{M} w L_{g}(w) d v_{g}}{\int_{M}|u|^{N-2} w^{2} d v_{g}}
$$

Let $\left(w_{m}\right)$ be a minimizing sequence for $\lambda_{2, g}^{\prime}$ i.e. a sequence $w_{m} \in E$ such that

$$
\lim _{m} \frac{\int_{M} w_{m} L_{g}\left(w_{m}\right) d v_{g}}{\int_{M}|u|^{N-2} w_{m}^{2} d v_{g}}=\lambda_{2, g}^{\prime}
$$

The same arguments lead to a minimizer $w$ to $\lambda_{2, g}^{\prime}$ with $\int_{M} u^{N-2} w^{2}=1$.
Now writing

$$
\int_{M} u^{N-2} w v d v_{g}=\int_{M} u^{N-2} v\left(w-w_{m}\right) d v_{g}+\int_{M} u^{N-2} w_{m} v d v_{g}
$$

and taking account of $\int_{M} u^{N-2} w_{m} v d v_{g}=0$ and the fact that $w_{m} \rightarrow w$ weakly in $L^{N}(M)$ and since $u^{N-2} v \in L^{\frac{N}{N-1}}(M)$, we infer that

$$
\int_{M} u^{N-2} w v d v_{g}=0 .
$$

Hence (8) and (9) are satisfied with $\lambda_{2, g}^{\prime}$ instead of $\lambda_{2, \bar{g}}$.

Proposition 2.5. We have

$$
\lambda_{2, g}^{\prime}=\lambda_{2, \bar{g}}
$$

Proof. The proof is the same as in ([3]) so we omit it.
Remark 2.6. If $p>n$ then $u \in H_{2}^{p}(M) \subset C^{1}(M)$, by Theorem $9, v$ and $w \in C^{1}(M)$ with $v>0$.

Remark 2.7. If $p>n$ then $u \in H_{2}^{p}(M) \subset C^{1}(M)$ and $\lambda_{2, \bar{g}}=\lambda_{1, \bar{g}}$, we see that $|w|$ is a minimizer for the functional associated to $\lambda_{1, \bar{g}}$, then $|w|$ satisfies the same equation as $v$ and by Theorem 9 we get $|w|>0$, this contradicts relation (9), necessarily

$$
\lambda_{2, \bar{g}}>\lambda_{1, \bar{g}}
$$

## 3. Variational characterization and existence of $\mu_{1}$

In this section we need the following Sobolev's inequality (see [5])
Theorem 3.1. Let $(M, g)$ be a compact $n$-dimensional Riemannian manifold. For any $\varepsilon>0$, there exists $A(\varepsilon)>0$ such that $\forall u \in H_{1}^{2}(M)$,

$$
\|u\|_{N}^{2} \leq\left(K^{2}+\varepsilon\right)\|\nabla u\|_{2}^{2}+A(\varepsilon)\|u\|_{2}^{2}
$$

where $N=2 n /(n-4)$ and $K^{2}=4 /(n(n-2)) \omega_{n}^{\frac{-2}{n}}$. $\omega_{n}$ is the volume of the round sphere $S_{n}$.

Let $[g]=\left\{u^{N-2} g: u \in H_{2}^{p}(M)\right.$ and $\left.u>0\right\}$, we define the first singular Yamabe invariant $\mu_{1}$ as

$$
\mu_{1}=\inf _{\bar{g} \in[g]} \lambda_{1, \bar{g}} \operatorname{Vol}(M, \tilde{g})^{2 / n}
$$

then we get

$$
\mu_{1}=\inf _{u \in H_{2}^{p}, V \in G r_{1}^{u}\left(H_{1}^{2}\right)} \sup _{v \in V} \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M}|u|^{N-2} v^{2} d v_{g}}\left(\int_{M} u^{N} d v_{g}\right)^{\frac{2}{n}} .
$$

Lemma 3.2. We have

$$
\mu_{1} \leq \mu<K^{-2}
$$

Proof. If $p \geq 2 n /(n+2)$, the embedding $H_{2}^{p}(M) \subset H_{1}^{2}(M)$ is true, so

$$
\begin{aligned}
\mu_{1} & =\inf _{u \in H_{2}^{p}, V \in G r_{1}^{u}\left(H_{1}^{2}(M)\right)} \sup _{v \in V} \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M}|u|^{N-2} v^{2} d v_{g}}\left(\int_{M} u^{N} d v_{g}\right)^{\frac{2}{n}} \\
& \leq \inf _{u \in H_{2}^{p}, V \in G r_{1}^{u}\left(H_{2}^{p}(M)\right)} \sup _{v \in V} \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M}|u|^{N-2} v^{2} d v_{g}}\left(\int_{M} u^{N} d v_{g}\right)^{\frac{2}{n}}
\end{aligned}
$$

in particular for $p>\frac{n}{2}$ and $u=v$ we get

$$
\mu_{1} \leq \inf _{v \in H_{2}^{P}, V \in G r_{1}^{u}\left(H_{2}^{P}(M)\right)} \sup _{v \in V} \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M}|v|^{N-2} v^{2} d v_{g}}\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{n}}=\mu
$$

i.e

$$
\mu_{1} \leq \mu<K^{-2}
$$

Theorem 3.3. If $\mu>0$, there exits conform metric $\bar{g}=u^{N-2} g$ which minimizes $\mu_{1}$.
Proof. The proof will take several steps.
Step 1: We study a sequence of metrics $g_{m}=u_{m}^{N-2} g$ with $u_{m} \in$ $H_{2}^{p}(M), u_{m}>0$ which minimize $\mu_{1}$ i.e. a sequence of metrics such that

$$
\mu_{1}=\lim _{m} \lambda_{1, m}\left(\operatorname{Vol}\left(M, g_{m}\right)^{2 / n}\right.
$$

Without loss of generality, we may assume that $\operatorname{Vol}\left(M, g_{m}\right)=1$ i.e.

$$
\int_{M} u_{m}^{N} d v_{g}=1
$$

In particular, the sequence of functions $u_{m}$ is bounded in $L^{N}(M)$ and there exists $u \in L^{N}(M), u \geq 0$ such that $u_{m} \rightarrow u$ weakly in $L^{N}(M)$. We are going to prove that the generalized metric $u^{N-2} g$ minimizes $\mu_{1}$. Proposition 2.4 implies the existence of a sequence $\left(v_{m}\right)$ in $H_{1}^{2}(M), v_{m}>0$ such that

$$
L_{g}\left(v_{m}\right)=\lambda_{1, m} u_{m}^{N-2} v_{m}
$$

and

$$
\int_{M} u_{m}^{N-2} v_{m}^{2} d v_{g}=1
$$

## The second Yamabe invariant with singularities

now since $\mu>0$, by Proposition $1.10, L_{g}$ is coercive and we infer that

$$
c\left\|v_{m}\right\|_{H_{1}^{2}} \leq \int_{M} v_{m} L_{g}\left(v_{m}\right) d v_{g}=\lambda_{1, m} \leq \mu_{1}+1
$$

The sequence $\left(v_{m}\right)_{m}$ is bounded in $H_{1}^{2}(M)$, we can find $v \in$ $H_{1}^{2}(M), v \geq 0$ such that $v_{m} \rightarrow v$ weakly in $H_{1}^{2}(M)$. Together with the weak convergence of $\left(u_{m}\right)_{m}$, we obtain in the sense of distributions

$$
L_{g}(v)=\mu_{1} u^{N-2} v
$$

Step 2: Now we are going to show that $v_{m} \rightarrow v$ strongly in $H_{1}^{2}(M)$.
We put

$$
z_{m}=v_{m}-v
$$

then $z_{m} \rightarrow 0$ weakly in $H_{1}^{2}(M)$ and strongly in $L^{q}(M)$ with $q<$ $N$, and writing

$$
\int_{M}\left|\nabla v_{m}\right|^{2} d v_{g}=\int_{M}\left|\nabla z_{m}\right|^{2} d v_{g}+\int_{M}|\nabla v|^{2} d v_{g}+2 \int_{M} \nabla z_{m} \nabla v d v_{g}
$$

we see that

$$
\int_{M}\left|\nabla v_{m}\right|^{2} d v_{g}=\int_{M}\left|\nabla z_{m}\right|^{2} d v_{g}+\int_{M}|\nabla v|^{2} d v_{g}+o(1)
$$

Now because of $2 p /(p-1)<N$, we have

$$
\int_{M} \frac{n-2}{4(n-1)} S_{g}\left(v_{m}-v\right)^{2} d v_{g} \leq \frac{n-2}{4(n-1)}\left\|S_{g}\right\|_{p}\left\|v_{m}-v\right\|_{\frac{2 p}{p-1}}^{2} \rightarrow 0
$$

so

$$
\int_{M} \frac{n-2}{4(n-1)} S_{g} v_{m}^{2} d v_{g}=\int_{M} \frac{n-2}{4(n-1)} S_{g} v^{2} d v_{g}+o(1)
$$

and

$$
\begin{gathered}
\int_{M}\left|\nabla v_{m}\right|^{2} d v_{g}+\int_{M} \frac{n-2}{4(n-1)} S_{g}\left(v_{m}\right)^{2} d v_{g} \\
=\int_{M}\left|\nabla z_{m}\right|^{2} d v_{g}+\int_{M}|\nabla v|^{2} d v_{g}+\int_{M} \frac{n-2}{4(n-1)} S_{g}(v)^{2} d v_{g}+o(1)
\end{gathered}
$$

Then

$$
\begin{aligned}
& \int_{M} v_{m} L_{g} v_{m} d v_{g} \\
& \quad=\int_{M}\left|\nabla z_{m}\right|^{2} d v_{g}+\int_{M}|\nabla v|^{2} d v_{g}+\int_{M} \frac{n-2}{4(n-1)} S_{g} v^{2} d v_{g}+o(1)
\end{aligned}
$$

And by the definition of $\mu$ and Lemma 3.2 we get
$\int_{M}|\nabla v|^{2} d v_{g}+\int_{M} \frac{n-2}{4(n-1)} S_{g}(v)^{2} d v_{g} \geq \mu\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{N}} \geq \mu_{1}\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{N}}$
then
$\int_{M} v_{m} L_{g}\left(v_{m}\right) d v_{g} \geq \int_{M}\left|\nabla z_{m}\right|^{2} d v_{g}+\mu_{1}\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{N}}+o(1)$.
And since

$$
\int_{M} v_{m} L_{g}\left(v_{m}\right) d v_{g}=\lambda_{1, m} \leq \mu_{1}+o(1)
$$

and

$$
\int_{M}\left|\nabla z_{m}\right|^{2} d v_{g}+\mu_{1}\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{N}} \leq \mu_{1}+o(1)
$$

i.e

$$
\begin{equation*}
\mu_{1}\|v\|_{N}^{2}+\left\|\nabla z_{m}\right\|_{2}^{2} \leq \mu_{1}+o(1) \tag{10}
\end{equation*}
$$

Now by Brézis-Lieb lemma ([4]), we get

$$
\lim _{m} \int_{M}\left(v_{m}^{N}+z_{m}^{N}\right) d v_{g}=\int_{M} v^{N} d v_{g}
$$

i.e.

$$
\lim _{m}\left\|v_{m}\right\|_{N}^{N}-\left\|z_{m}\right\|_{N}^{N}=\|v\|_{N}^{N}
$$

Hence

$$
\left\|v_{m}\right\|_{N}^{N}+o(1)=\left\|z_{m}\right\|_{N}^{N}+\|v\|_{N}^{N}
$$

By Hölder's inequality and $\int_{M} u_{m}^{N-2} v_{m}^{2} d v_{g}=1$, we get

$$
\left\|v_{m}\right\|_{N}^{N} \geq 1
$$

## The second Yamabe invariant with singularities

i.e.

$$
\int_{M}\left(v^{N}+z_{m}^{N}\right) d v_{g}=\int_{M} v_{m}^{N} d v_{g}+o(1) \geq 1+o(1)
$$

Then

$$
\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{N}}+\left(\int_{M} z_{m}^{N} d v_{g}\right)^{\frac{2}{N}} \geq 1+o(1)
$$

i.e.

$$
\left\|z_{m}\right\|_{N}^{2}+\|v\|_{N}^{2} \geq 1+o(1)
$$

Now by Theorem 3.1 and the fact $z_{m} \rightarrow 0$ strongly in $L^{2}(M)$, we get

$$
\left\|z_{m}\right\|_{N}^{2} \leq\left(K^{2}+\varepsilon\right)\left\|\nabla z_{m}\right\|_{2}^{2}+o(1)
$$

$$
1+o(1) \leq\left\|z_{m}\right\|_{N}^{2}+\|v\|_{N}^{2} \leq\|v\|_{N}^{2}+\left(K^{2}+\varepsilon\right)\left\|\nabla z_{m}\right\|_{2}^{2}+o(1)
$$

So we deduce

$$
1+o(1) \leq\|v\|_{N}^{2}+\left(K^{2}+\varepsilon\right)\left\|\nabla z_{m}\right\|_{2}^{2}+o(1)
$$

and from inequality (10), we get

$$
\left\|\nabla z_{m}\right\|_{2}^{2}+\mu_{1}\|v\|_{N}^{2} \leq \mu_{1}\left(\left(K^{2}+\varepsilon\right)\left\|\nabla z_{m}\right\|_{2}^{2}+\|v\|_{N}^{2}\right)+o(1)
$$

So if $\mu_{1} K^{2}<1$, we get

$$
\left.\left(1-\mu_{1}\left(K^{2}+\varepsilon\right)\right)\left\|\nabla z_{m}\right\|_{2}^{2}\right) \leq o(1)
$$

i.e. $v_{m} \rightarrow v$ strongly in $H_{1}^{2}(M)$.

M. Benalili \& H. Boughazi

Step 3: We have

$$
\begin{aligned}
& \lim _{m} \int_{M}\left(u_{m}^{N-2} v_{m}^{2}-u^{N-2} v^{2}+u_{m}^{N-2} v^{2}-u_{m}^{N-2} v^{2}\right) d v_{g} \\
& =\lim _{m} \int_{M}\left(u_{m}^{N-2}\left(v_{m}^{2}-v^{2}\right)+\left(u_{m}^{N-2}-u^{N-2}\right) v^{2}\right) d v_{g}
\end{aligned}
$$

Now since $u_{m} \rightarrow u$ a.e. so does $u_{m}^{N-2} \rightarrow u^{N-2}$ and $\int_{M} u_{m}^{N-2} d v_{g} \leq c$, hence $u_{m}^{N-2}$ is bounded in $L^{N /(N-2)}(M)$ and up to a subsequence $u_{m}^{N-2} \rightarrow u^{N-2}$ weakly in $L^{N /(N-2)}(M)$. Since $v^{2} \in L^{\frac{N}{2}}(M)$, we have

$$
\lim _{m} \int_{M}\left(u_{m}^{N-2}-u^{N-2}\right) v^{2} d v_{g}=0
$$

and by Hölder's inequality

$$
\begin{array}{rl}
\lim _{m} \int_{M} u_{m}^{N-2}\left(v_{m}-v\right)^{2} & d v_{g} \\
\leq & \left(\int_{M} u_{m}^{N} d v_{g}\right)^{(N-2) / N}\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{2}{N}} \leq 0
\end{array}
$$

By the strong convergence of $\left(v_{m}\right)$ in $L^{N}(M)$, we get

$$
\int_{M} u^{N-2} v^{2} d v_{g}=1
$$

then $v$ and $u$ are non trivial functions.
Step 4: Let $\bar{u}=a v \in L_{+}^{N}(M)$ with $a>0$ a constant such that $\int_{M} \bar{u}^{N} d v_{g}=1$ with $v$ a solution of

$$
L_{g}(v)=\mu_{1} u^{N-2} v
$$

with the constraint

$$
\int_{M} u^{N-2} v^{2} d v_{g}=1
$$

We claim that $u=v$; indeed,

$$
\begin{gathered}
\mu_{1} \leq \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M} \bar{u}^{N-2} v^{2} d v_{g}} \\
\leq \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M}(a v)^{N-2} v^{2} d v_{g}}=\frac{a^{2} \mu_{1} \int_{M} u^{N-2} v^{2} d v_{g}}{\int_{M} \bar{u}^{N-2}(a v)^{2} d v_{g}}
\end{gathered}
$$

and Hölder's inequality lead

$$
\begin{gathered}
\leq \mu_{1} \int_{M}(u)^{N-2}(a v)^{2} d v_{g} \\
\leq \mu_{1}\left(\int_{M}(u)^{N-2 \frac{N}{N-2}}\right)^{\frac{N-2}{N}}\left(\int_{M}(a v)^{2 \frac{N}{2}} d v_{g}\right)^{\frac{2}{N}} \leq \mu_{1}
\end{gathered}
$$

And since the equality in Hölder's inequality holds if

$$
\bar{u}=u=a v
$$

then $a=1$ and

$$
u=v
$$

Then $v$ satisfies $L_{g} v=\mu_{1} v^{N-1}$, by Theorem 2.2 we get $v=u \in$ $H_{2}^{p}(M) \subset C^{1-\left[\frac{n}{p}\right], \beta}(M)$ with $\beta \in(0,1)$ and $v=u>0$,
Resuming, we have

$$
L_{g}(v)=\mu_{1} v^{N-1}, \int_{M} v^{N} d v_{g}=1 \text { and } v=u \in H_{2}^{p}(M) \subset C^{1-\left[\frac{n}{p}\right], \beta}(M)
$$

so the metric $\tilde{g}=u^{N-2} g$ minimizes $\mu_{1}$.

## 4. Yamabe conformal invariant with singularities

Theorem 4.1. If $\mu \geq 0$, then $\mu_{1}=\mu$
Proof. Step 1: If $\mu>0$. Let $v$ such that $L_{g}(v)=\mu_{1} v^{N-1}$ and $\int_{M} v^{N} d v_{g}=1$ then

$$
\mu_{1}=\int_{M} v L_{g}(v) d v_{g} \geq c\|v\|_{H_{1}^{2}}
$$

and $v$ in non trivial function then $\mu_{1}>0$. On the other hand

$$
\begin{aligned}
& \mu=\inf \frac{\int_{M} v L_{g}(v) d v_{g}}{\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{N}}} \\
& \leq \int_{M} v L_{g}(v) d v_{g}=\mu_{1}
\end{aligned}
$$

and by Lemma 3.2 , we get

$$
\mu_{1}=\mu
$$

Step 2: If $\mu=0$, Lemma 3.2 implies that $\mu_{1} \leq 0$, hence

$$
\mu_{1}=0
$$

## 5. Variational characterization of $\mu_{2}$

Let $[g]=\left\{u^{N-2} g, u \in H_{2}^{p}(M)\right.$ and $\left.u>0\right\}$, we define the second Yamabe invariant $\mu_{2}$ as

$$
\mu_{2}=\inf _{\bar{g} \in[g]} \lambda_{2, \bar{g}} \operatorname{Vol}(M, \bar{g})^{2 / n}
$$

or more explicitly

$$
\mu_{2}=\inf _{u \in H_{2}^{P}, V \in G r_{2}^{u}\left(H_{1}^{2}(M)\right)} \sup _{v \in V} \frac{\int_{M} v L_{g}(v) d v_{g}}{\int_{M}|u|^{N-2} v^{2} d v_{g}}\left(\int_{M} u^{N} d v_{g}\right)^{\frac{2}{n}}
$$

Theorem 5.1 ([1]). On a compact Riemannian manifold $(M, g)$ of dimension $n \geq 3$, we have for all $v \in H_{1}^{2}(M)$ and for all $u \in L_{+}^{N}(M)$

$$
2^{\frac{2}{n}} \int_{M}|u|^{N-2} v^{2} d v_{g} \leq\left(K^{2} \int_{M}|\nabla v|^{2} d v_{g}+\int_{M} B_{0} v^{2} d v_{g}\right)\left(\int_{M} u^{N} d v_{g}\right)^{\frac{2}{n}}
$$

Or

$$
2^{\frac{2}{n}} \int_{M}|u|^{N-2} v^{2} d v_{g} \leq \mu_{1}\left(S_{n}\right)\left(\int_{M} C_{n}|\nabla v|^{2}+B_{0} v^{2} d v_{g}\right)\left(\int_{M} u^{N} d v_{g}\right)^{\frac{2}{n}}
$$

Theorem 5.2. ([1]) For any compact Riemannian manifold $(M, g)$ of dimension $n \geq 3$, there exists $B_{0}>0$ such that

$$
\mu_{1}\left(S_{n}\right)=n(n-1) \omega_{n}^{2 / n}=\inf _{H_{1}^{2}} \frac{\int_{M}}{\frac{4(n-1)}{(n-2)}|\nabla u|^{2}+B_{0} u^{2} d v_{g}}\left(\int_{M}|u|^{N} d v_{g}\right)^{2 / N} \quad
$$

where $\omega_{n}$ is the volume of the unit round sphere

$$
\begin{aligned}
& \quad\left(\int_{M}|u|^{N} d v_{g}\right)^{2 / N} \leq K^{2} \int_{M}|\nabla u|^{2} d v_{g}+\int_{M} B_{0} u^{2} d v_{g} \\
& K^{2}=\mu_{1}\left(S_{n}\right)^{-1} C_{n} \text { and } C_{n}=(4(n-1)) /(n-2)
\end{aligned}
$$

## 6. Properties of $\mu_{2}$

We know that $g$ is smooth in the ball $B_{p}(\delta)$ by assumption $(H)$, this assumption is sufficient to prove that Aubin's conjecture is valid. The case $(M, g)$ is not conformally flat in a neighborhood of the point $P$ and $n \geq 6$, let $\eta$ is a cut-off function with support in the ball $B_{p}(2 \varepsilon)$ and $\eta=1$ in $B_{p}(\varepsilon)$, where $2 \varepsilon \leq \delta$ and

$$
v_{\varepsilon}(q)=\left(\frac{\varepsilon}{r^{2}+\varepsilon^{2}}\right)^{\frac{n-2}{2}}
$$

with $r=d(p, q)$. We let $u_{\varepsilon}=\eta v_{\varepsilon}$ and define

$$
Y(u)=\frac{\int_{M}\left(|\nabla u|^{2}+\frac{n-2}{4(n-1)} S_{g} u^{2}\right) d v_{g}}{\left(\int_{M}|u|^{N} d v_{g}\right)^{2 / N}}
$$

We obtain the following lemma
Lemma 6.1. ([1])

$$
\mu=Y\left(v_{\varepsilon}\right) \leq\left\{\begin{array}{c}
\left\{\left(K^{-2}-c|w(P)|^{2} \varepsilon^{4}+0\left(\varepsilon^{4}\right) \text { if } n>6\right.\right. \\
K^{-2}-c|w(P)|^{2} \varepsilon^{4} \log \frac{1}{\varepsilon}+0\left(\varepsilon^{4}\right) \text { ifn }=6
\end{array}\right.
$$

where $|w(P)|$ is the norm of the Weyl tensor at the point $P$ and $c>0$.
Theorem 6.2. If $(M, g)$ is not locally conformally flat and $n \geq 11$ and $\mu>0$, we find

$$
\mu_{2}<\left(\left(\mu^{\frac{n}{2}}+\left(K^{-2}\right)^{\frac{n}{2}}\right)^{\frac{2}{n}}\right.
$$

and if $\mu=0, n \geq 9$ then

$$
\mu_{2}<K^{-2}
$$

## M. Benalili \& H. Boughazi

Proof. With the same method as in ([1]), this theorem follows from Lemma 6.1.

## 7. Existence of a minimizer to $\mu_{2}$

Lemma 7.1. Assume that $v_{m} \rightarrow v$ weakly in $H_{1}^{2}(M), u_{m} \rightarrow u$ weakly in $L^{N}(M)$ and $\int_{M} u_{m}{ }^{N-2} v_{m}{ }^{2} d v_{g}=1$ then

$$
\int_{M} u_{m}^{N-2}\left(v_{m}-v\right)^{2} d v_{g}=1-\int_{M} u^{N-2} v^{2} d v_{g}+o(1)
$$

Proof. we have

$$
\begin{gather*}
\int_{M} u_{m}^{N-2}\left(v_{m}-v\right)^{2} d v_{g} \\
=\int_{M} u_{m}^{N-2} v_{m}^{2} d v_{g}+\int_{M} u_{m}^{N-2} v^{2} d v_{g}-\int_{M} 2 u_{m}^{N-2} v_{m} v d v_{g} \\
=1+\int_{M} u_{m}^{N-2} v^{2} d v_{g}-\int_{M} 2 u_{m}^{N-2} v_{m} v d v_{g} \tag{15}
\end{gather*}
$$

Now $\left(u_{m}^{N-2}\right)_{m}$ is bounded in $L^{\frac{N}{N-2}}(M)$ and $u_{m}^{N-2} \rightarrow u^{N-2}$ a.e., then $u_{m}^{N-2} \rightarrow u^{N-2}$ weakly in $L^{\frac{N}{N-2}}(M)$ and $\forall \phi \in L^{\frac{N}{2}}(M)$

$$
\int_{M} \phi u_{m}^{N-2} d v_{g} \rightarrow \int_{M} \phi u^{N-2} d v_{g}
$$

in particular for $\phi=v^{2}$

$$
\int_{M} v^{2} u_{m}^{N-2} d v_{g} \rightarrow \int_{M} v^{2} u^{N-2} d v_{g}
$$

$\int_{M} u_{m}{ }^{N-2} v_{m} d v_{g}$ is bounded in $L^{\frac{N}{N-1}}(M)$, because of

$$
\int_{M} u_{m}^{N-2 \frac{N}{N-1}} v_{m}^{\frac{N}{N-1}} d v_{g} \leq\left(\int_{M} u_{m}^{N} d v_{g}\right)^{\frac{N-2}{N-1}}\left(\int_{M} v_{m}^{N} d v_{g}\right)^{\frac{1}{N-1}}
$$

and $u_{m}{ }^{N-2} v_{m} \rightarrow u^{N-2} v$ a.e., then $u_{m}^{N-2} v_{m} \rightarrow u^{N-2} v$ weakly in $L^{\frac{N}{N-1}}(M)$.

Hence

$$
\int_{M} u_{m}^{N-2} v_{m} v d v_{g} \rightarrow \int_{M} u^{N-2} v^{2} d v_{g}
$$

and

$$
\int_{M} u_{m}^{N-2}\left(v_{m}-v\right)^{2} d v_{g}=1-\int_{M} u^{N-2} v^{2} d v_{g}+o(1)
$$

Theorem 7.2. If $1-2^{-\frac{2}{n}} K^{2} \mu_{2}>0$, then the generalized metric $u^{N-2} g$ minimizes $\mu_{2}$

Proof. $\quad$ Step 1: We study a sequence of metrics $g_{m}=u_{m}^{N-2} g$ with $u_{m} \in H_{2}^{p}(M), u_{m}>0$ which minimizes the infimum in the definition of $\mu_{2}$ i.e. a sequence of metrics such that

$$
\mu_{2}=\lim \lambda_{2, m}\left(\operatorname{Vol}\left(M, g_{m}\right)^{2 / n}\right.
$$

Without loss generality, we may assume that $\operatorname{Vol}\left(M, g_{m}\right)=1$ i.e. that $\int_{M} u_{m}^{N} d v_{g}=1$. In particular, the sequence of functions $\left(u_{m}\right)_{m}$ is bounded in $L^{N}(M)$ and there exists $u \in L^{N}(M), u \geq 0$ such that $u_{m} \rightarrow u$ weakly in $L^{N}$. We are going to prove that the generalized metric $u^{N-2} g$ minimizes $\mu_{2}$. Proposition 2.4, implies the existence of $v_{m}, w_{m} \in H_{1}^{2}(M), v_{m}>0$ such that

$$
\begin{aligned}
& L_{g}\left(v_{m}\right)=\lambda_{1, m} u_{m}^{N-2} v_{m} \\
& L_{g}\left(w_{m}\right)=\lambda_{2, m} u_{m}^{N-2} w_{m}
\end{aligned}
$$

And such that

$$
\int_{M} u_{m}^{N-2} v_{m}^{2} d v_{g}=\int_{M} u_{m}^{N-2} w_{m}^{2} d v_{g}=1, \int_{M} u_{m}^{N-2} v_{m} w_{m} d v_{g}=0
$$

The sequence $v_{m}, w_{m}$ is bounded in $H_{1}^{2}(M)$, we can find $v, w \in$ $H_{1}^{2}(M), v \geq 0$ such that $v_{m} \rightarrow v, w_{m} \rightarrow w$ weakly in $H_{1}^{2}(M)$. Together with the weak convergence of $\left(u_{m}\right)$, we get in weak sense

$$
L_{g}(v)=\widehat{\mu_{1}} u^{N-2} v
$$

and

$$
L_{g}(w)=\mu_{2} u^{N-2} w
$$

where

$$
\widehat{\mu_{1}}=\lim \lambda_{1, m} \leq \mu_{2} .
$$

## M. Benalili \& H. Boughazi

Step 2: Now we show $v_{m} \rightarrow v, w_{m} \rightarrow w$ strongly in $H_{1}^{2 \cdot}(M)$. Applying Theorem 5.1 to the sequence $v_{m}-v$, we get

$$
\begin{aligned}
& \int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g} \\
& \quad \leq\left(2^{-\frac{2}{n}} K^{2} \int_{M}\left|\nabla\left(v_{m}-v\right)\right|^{2} d v_{g}+\int_{M} B_{0}\left(v_{m}-v\right)^{2} d v_{g}\right)\left(\int_{M} u^{N} d v_{g}\right)^{\frac{2}{n}}
\end{aligned}
$$

and since $v_{m} \rightarrow v$ strongly in $L^{2}(M)$,

$$
\begin{gathered}
\int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g} \leq\left(2^{-\frac{2}{n}} K^{2} \int_{M}\left|\nabla\left(v_{m}-v\right)\right|^{2} d v_{g}+o(1)\right. \\
\quad \leq 2^{-\frac{2}{n}} K^{2} \int_{M}\left(\left|\nabla\left(v_{m}\right)\right|^{2}+|\nabla v|^{2}-2 \nabla v_{m} \nabla v\right) d v_{g}+o(1)
\end{gathered}
$$

By the weak convergence of $\left(v_{m}\right), \int_{M} \nabla v_{m} \nabla v d v_{g}=\int_{M}|\nabla v|^{2} d v_{g}+$ $o(1)$

$$
\int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g} \leq 2^{-\frac{2}{n}} K^{2} \int_{M}\left(\left|\nabla\left(v_{m}\right)\right|^{2}-|\nabla v|^{2}\right) d v_{g}+o(1)
$$

and since

$$
\int_{M} \frac{n-2}{4(n-1)} S_{g} v_{m}^{2} d v_{g}=\int_{M} \frac{n-2}{4(n-1)} S_{g} v^{2} d v_{g}+o(1)
$$

we get

$$
\begin{aligned}
& \quad \int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g} \\
&\left.\leq 2^{-\frac{2}{n}} K^{2} \int_{M}\left(\left|\nabla\left(v_{m}\right)\right|^{2}-|\nabla v|^{2}\right) d v_{g}+\int_{M} \frac{n-2}{4(n-1)} S_{g}\left(v_{m}^{2}-v^{2}\right) d v_{g}\right)+o(1) \\
& \leq 2^{-\frac{2}{n}} K^{2} \int_{M}\left(v_{m} L_{g}\left(v_{m}\right)-v L_{g}(v)\right) d v_{g}+o(1) \\
& \leq 2^{-\frac{2}{n}} K^{2}\left(\lambda_{1, m}-\widehat{\mu_{1}} \int_{M} u^{N-2} v^{2} d v_{g}\right)+o(1)
\end{aligned}
$$

By the fact $\widehat{\mu_{1}}=\lim \lambda_{1, m} \leq \mu_{2}$

## The second Yamabe invariant with singularities

$$
\leq 2^{-\frac{2}{n}} K^{2} \mu_{2}\left(1-\int_{M} u^{N-2} v^{2} d v_{g}\right)+o(1)
$$

Then
$\int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g} \leq 2^{-\frac{2}{n}} K^{2} \mu_{2}\left(1-\int_{M} u^{N-2} v^{2} d v_{g}\right)+o(1)$
Now using the weak convergence of $\left(v_{m}\right)$ in $H_{1}^{2}(M)$ and the weak convergence of $\left(u_{m}\right)$ in $L^{N}(M)$, we infer by Lemma 7.1 that

$$
\int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g}=1-\int_{M} u^{N-2} v^{2} d v_{g}+o(1)
$$

then

$$
1-\int_{M} u^{N-2} v^{2} d v_{g} \leq 2^{-\frac{2}{n}} K^{2} \mu_{2}\left(1-\int_{M} u^{N-2} v^{2} d v_{g}\right)+o(1)
$$

and

$$
1-2^{-\frac{2}{n}} K^{2} \mu_{2} \leq\left(1-2^{-\frac{2}{n}} K^{2} \mu_{2}\right) \int_{M} u^{N-2} v^{2} d v_{g}+o(1)
$$

So if $1-2^{-\frac{2}{n}} K^{2} \mu_{2}>0$ then

$$
\int_{M} u^{N-2} v^{2} d v_{g} \geq 1
$$

and by Fatou's lemma, we obtain

$$
\int_{M} u^{N-2} v^{2} d v_{g} \leq \underline{\lim } \int_{M} u_{m}^{N-2} v_{m}^{2} d v_{g}=1
$$

We find that

$$
\begin{equation*}
\int_{M} u^{N-2} v^{2} d v_{g}=1 \tag{16}
\end{equation*}
$$

So $u$ and $v$ are not trivial.
Moreover

$$
\int_{M}\left|\nabla\left(v_{m}-v\right)\right|^{2} d v_{g}=\int_{M}\left(\left|\nabla\left(v_{m}\right)\right|^{2}+|\nabla v|^{2}-2 \nabla v_{m} \nabla v\right) d v_{g}
$$

$$
=\int_{M}\left(\left|\nabla\left(v_{m}\right)\right|^{2}-|\nabla v|^{2}\right) d v_{g}+o(1)
$$

and since $\int_{M} S_{g}\left(v_{m}^{2}-v^{2}\right) d v_{g}=o(1)$, we get

$$
\begin{gathered}
\int_{M}\left|\nabla\left(v_{m}-v\right)\right|^{2} d v_{g}=\int_{M}\left(v_{m} L_{g}\left(v_{m}\right)-v L_{g}(v)\right) d v_{g}+o(1) \\
\leq \mu_{2}\left(1-\int_{M} u^{N-2} v^{2} d v_{g}\right)+o(1)
\end{gathered}
$$

Then, by relation (16)

$$
\int_{M}\left|\nabla\left(v_{m}-v\right)\right|^{2} d v_{g}=o(1)
$$

and $v_{m} \rightarrow v$ strongly in $H_{1}^{2}(M)$. The same argument holds with $\left(w_{m}\right)$, hence $w_{m} \rightarrow w$ strongly in $H_{1}^{2}(M)$ and $\int_{M} u^{N-2} w^{2} d v_{g}=1$.
To show that $\int_{M} u^{N-2} v w d v_{g}=0$, first writing and using Hölder's inequality, we get

$$
\begin{gathered}
\int_{M}\left(u_{m}^{N-2} v_{m} w_{m}-u^{N-2} v w\right) d v_{g}=\int_{M}\left(u_{m}^{N-2} v_{m} w_{m}-u_{m}^{N-2} v w_{m}\right) d v_{g} \\
+\int_{M}\left(u_{m}^{N-2} v w_{m}-u^{N-2} v w\right) d v_{g} \\
=\int_{M} u_{m}^{N-2}\left(v_{m}-v\right) w_{m} d v_{g}+\int_{M}\left(u_{m}^{N-2} v w_{m}-u^{N-2} v w\right) d v_{g} \\
=\int_{M} u_{m}^{\frac{N-2}{2}} w_{m}\left[u_{m}^{\frac{N-2}{2}}\left(v_{m}-v\right)\right] d v_{g}+\int_{M}\left(u_{m}^{N-2} v w_{m}-u^{N-2} v w\right) d v_{g} \\
\leq\left(\int_{M} u_{m}^{N-2} w_{m}^{2} d v_{g}\right)^{\frac{1}{2}}\left(\int_{M} u_{m}^{N-2}\left(v_{m}-v\right)^{2} d v_{g}\right)^{\frac{1}{2}} \\
\quad+\int_{M}\left(u_{m}^{N-2} v w_{m}-u^{N-2} v w\right) d v_{g}
\end{gathered}
$$

$$
\begin{gathered}
\leq\left(\int_{M} u_{m}^{N-2}\left(v_{m}-v\right)^{2} d v_{g}\right)^{\frac{1}{2}}+\int_{M}\left(u_{m}^{N-2} v w_{m}-u^{N-2} v w\right) d v_{g} \\
\leq \\
\quad\left[\left(\int_{M} u_{m}^{N-2 \frac{N}{N-2}} d v_{g}\right)^{\frac{N-2}{N}}\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{2}{N}}\right]^{\frac{1}{2}} \\
+\int_{M}\left(u_{m}^{N-2} v w_{m}-u^{N-2} v w\right) d v_{g} \\
\leq\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{1}{N}}+\int_{M}\left(u_{m}^{N-2} v w_{m}-u^{N-2} v w\right) d v_{g} \\
\leq\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{1}{N}} \\
\quad+\int_{M}\left(u_{m}^{N-2} v w_{m}-u_{m}^{N-2} v w+u_{m}^{N-2} v w-u^{N-2} v w\right) d v_{g} \\
\leq\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{1}{N}} \\
\quad+\int_{M}\left(u_{m}^{N-2} v\left(w_{m}-w\right)+\left(u_{m}^{N-2}-u^{N-2}\right) v w\right) d v_{g} \\
\leq\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{1}{N}}+\left(\int_{M} u_{m}^{N-2} v^{2} d v_{g}\right)^{\frac{1}{2}}\left(\int_{M} u_{m}^{N-2}\left(w_{m}-w\right)^{2} d v_{g}\right)^{\frac{1}{2}} \\
\leq\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{1}{N}} \\
\quad+\int_{M}\left(u_{m}^{\frac{N-2}{2}} v\right)\left(u_{m}^{N-2}-u^{N-2}\right) v w d v_{g} \\
\leq
\end{gathered}
$$

$$
\begin{gathered}
\left.\leq\left(\int_{M}\left|v_{m}-v\right|^{N} d v_{g}\right)^{\frac{1}{N}}+\left(\int_{M} u_{m}^{N-2} v^{2} d v_{g}\right)^{\frac{1}{2}}\left(\int_{M}\left|w_{m}-w\right|\right)^{N} d v_{g}\right)^{\frac{1}{N}} \\
+\int_{M}\left(u_{m}^{N-2}-u^{N-2}\right) v w d v_{g}
\end{gathered}
$$

Now noting that

$$
\int_{M} u_{m}^{N-2} v^{2} d v_{g} \leq\left(\int_{M} u_{m}^{N} d v_{g}\right)^{\frac{N-2}{2}}\left(\int_{M} v^{N} d v_{g}\right)^{\frac{2}{N}}<+\infty
$$

and taking account of $u_{m}^{N-2} \rightarrow u^{N-2}$ weakly in $L^{\frac{N}{N-2}}(M)$ and the fact that $v w \in L^{\frac{N}{2}}(M)$, we deduce

$$
\int_{M}\left(u_{m}^{N-2}-u^{N-2}\right) v w d v_{g} \rightarrow 0
$$

hence

$$
\int_{M} u^{N-2} v w d v_{g}=0
$$

Consequently the generalized metric $u^{N-2} g$ minimizes $\mu_{2}$.

Theorem 7.3. If $\mu_{2}<K^{-2}$, then generalized metric $u^{N-2} g$ minimizes $\mu_{2}$
Proof. $\quad$ Step 1: We study a sequence of metrics $g_{m}=u_{m}^{N-2} g$ with $u_{m} \in H_{2}^{p}(M), u_{m}>0$ which attains $\mu_{2}$ i.e. a sequence of metrics such that

$$
\mu_{2}=\lim _{m} \lambda_{2, m}\left(\operatorname{Vol}\left(M, g_{m}\right)^{2 / n}\right.
$$

Without loss of generality, we may assume that $\operatorname{Vol}\left(M, g_{m}\right)=1$ i.e. $\int_{M} u_{m}^{N} d v_{g}=1$. In particular, the sequence $\left(u_{m}\right)_{m}$ is bounded in $L^{N}(M)$ and there exists $u \in L^{N}(M), u \geq 0$ such that $u_{m} \rightarrow u$ weakly in $L^{N}(M)$. We are going to prove that the metric $u^{N-2} g$ minimizes $\mu_{2}$. Proposition 2.4 and Theorem 1.8 imply the existence of $v_{m}, w_{m} \in C^{1-\left[\frac{n}{p}\right], \beta}$, with $\beta \in(0,1)(M), v_{m}>0$ such that

$$
L_{g}\left(v_{m}\right)=\lambda_{1, m} u_{m}^{N-2} v_{m}
$$

## The second Yamabe invariant with singularities

$$
L_{g}\left(w_{m}\right)=\lambda_{2, m} u_{m}^{N-2} w_{m}
$$

and
$\int_{M} u_{m}^{N-2} v_{m}^{2} d v_{g}=\int_{M} u_{m}^{N-2} w_{m}^{2} d v_{g}=1, \int_{M} u_{m}^{N-2} v_{m} w_{m} d v_{g}=0$.
The sequences $\left(v_{m}\right)_{m}$ and $\left(w_{m}\right)_{m}$ are bounded in $H_{1}^{2}(M)$, we can find $v, w \in H_{1}^{2}(M)$ with $v \geq 0$ such that $v_{m} \rightarrow v, w_{m} \rightarrow w$ weakly in $H_{1}^{2}(M)$. Together with the weak convergence of $\left(u_{m}\right)_{m}$, we get in the weak sense

$$
L_{g}(v)=\widehat{\mu_{1}} u^{N-2} v
$$

and

$$
L_{g}(w)=\mu_{2} u^{N-2} w
$$

where

$$
\widehat{\mu_{1}}=\lim \lambda_{1, m} \leq \mu_{2}
$$

Step 2: Now we are going to show that $v_{m} \rightarrow v, w_{m} \rightarrow w$ strongly in $H_{1}^{2 \cdot}(M)$.
By Hölder's inequality, Theorem 3.1, the strong convergence of $\left(v_{m}\right)$ in $L^{2 \cdot}(M)$, we get

$$
\begin{gathered}
\int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g} \leq\left\|v_{m}-v\right\|_{N}^{2} \leq K^{2}\left\|\nabla\left(v_{m}-v\right)\right\|_{2}^{2}+o(1) \\
\leq K^{2} \int_{M}\left(\left|\nabla\left(v_{m}\right)\right|^{2}+|\nabla v|^{2}-2 \nabla v_{m} \nabla v\right) d v_{g}+o(1) \\
\leq K^{2} \int_{M}\left(\left|\nabla\left(v_{m}\right)\right|^{2}-|\nabla v|^{2}\right) d v_{g}+o(1) \\
\leq K^{2} \int_{M}\left(v_{m} L_{g}\left(v_{m}\right)-v L_{g}(v)\right) d v_{g}+o(1) \\
\leq K^{2} \mu_{2}\left(1-\int_{M} u^{N-2} v^{2} d v_{g}\right)+o(1)
\end{gathered}
$$

and with Lemma 7.1

$$
\int_{M}\left|u_{m}\right|^{N-2}\left(v_{m}-v\right)^{2} d v_{g}=1-\int_{M} u^{N-2} v^{2} d v_{g}+o(1)
$$

then

$$
1-\int_{M} u^{N-2} v^{2} d v_{g} \leq K^{2} \mu_{2}\left(1-\int_{M} u^{N-2} v^{2} d v_{g}\right)+o(1)
$$

i.e

$$
1-K^{2} \mu_{2} \leq\left(1-K^{2} \mu_{2}\right) \int_{M} u^{N-2} v^{2} d v_{g}
$$

so if $1-K^{2} \mu_{2}>0$,

$$
\int_{M} u^{N-2} v^{2} d v_{g} \geq 1
$$

On the other hand since by Fatou's lemma

$$
\int_{M} u^{N-2} v^{2} d v_{g} \leq \underline{\lim } \int_{M} u_{m}^{N-2} v_{m}^{2} d v_{g}=1
$$

Then

$$
\int_{M} u^{N-2} v^{2} d v_{g}=1
$$

and

$$
\int_{M}\left|\nabla\left(v_{m}-v\right)\right|^{2} d v_{g}=o(1)
$$

Hence $v_{m} \rightarrow v$ strongly in $H_{1}^{2 \cdot}(M) \subset L^{N}(M)$.
The same conclusion also holds for $\left(w_{m}\right)_{m}$.
Lemma 7.4. Let $u \in L^{N}(M)$ with $\int_{M} u^{N} d v_{g}=1$ and $z, w$ nonnegative functions in $H_{1}^{2}(M)$ satisfying

$$
\begin{equation*}
\int_{M} w L_{g}(w) d v_{g} \leq \mu_{2} \int_{M} u^{N-2} w^{2} d v_{g} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{M} z L_{g}(z) d v_{g} \leq \mu_{2} \int_{M} u^{N-2} z^{2} d v_{g} \tag{21}
\end{equation*}
$$

And suppose that $\left(M-z^{-1}(0)\right) \cap\left(M-w^{-1}(0)\right)$ has measure zero. Then $u$ is a linear combination of $z$ and $w$ and we have equality in (20) and (21).

Proof. The proof is the same as that of Aummann and Humbert in ([1]).

## The second Yamabe invariant with singularities

Theorem 7.5. If a generalized metric $u^{N-2} g$ minimizes $\mu_{2}$, then there exists a nodal solution $w \in H_{2}^{p}(M) \subset C^{1-[n / p], \beta}(M)$
of equation

$$
\begin{equation*}
L_{g}(w)=\mu_{2} u^{N-2} w \tag{22}
\end{equation*}
$$

More over there exista, $b>0$ such that

$$
u=a w_{+}+b w_{-}
$$

With $w_{+}=\sup (w, 0)$ and $w_{-}=\sup (-w, 0)$.
Proof. Step 1: Applying Lemma 7.4 to $w_{+}=\sup (w, 0)$ and $w_{-}=$ $\sup (-w, 0)$, we get the existence of $a, b>0$ such that

$$
u=a w_{+}+b w_{-} .
$$

Now by Lemma 1.9, $w_{+}, w_{-} \in L^{\infty}(M)$ i.e. $u \in L^{\infty}(M), u^{N-2} \in$ $L^{\infty}(M)$, then

$$
h=S_{g}-\mu_{2} u^{N-2} \in L^{p}(M)
$$

and from Theorem 2.2, we obtain

$$
w \in H_{2}^{p}(M) \subset C^{1-[n / p], \beta}(M) .
$$

Step 2: If $\mu_{2}=\mu_{1}$, we see that $|w|$ is a minimizer to the functional associated to $\mu_{1}$, then $|w|$ satisfies the same equation as $v$ and Theorem 2.2 shows that $|w|=w \in H_{2}^{p}(M) \subset C^{1-[n / p], \beta}(M)$ that is $|w|>0$ everywhere, which contradicts the condition (9) in Proposition 2.4 , then

$$
\mu_{2}>\mu_{1} .
$$

Step 3: The solution $w$ of the equation (22) changes sign. Since if it does not, we may assume that $w \geq 0$, by step 2 the inequality in (20) is strict and by Lemma 7.4 we have the equality: a contradiction.

Remark 7.6. Step1 shows that $u$ is not necessarily in $H_{2}^{p}(M)$ and by the way the minimizing metric is not in $H_{2}^{p}\left(M, T^{*} M \otimes T^{*} M\right)$ contrary to the Yamabe invariant with singularities.

M. Benalili \& H. Boughazi

## References

[1] B. Ammann \& E. Humbert - "The second Yamabe invariant", J. Funct. Anal. 235 (2006), no. 2, p. 377-412.
[2] T. Aubin - "Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire", J. Math. Pures Appl. (9) 55 (1976), no. 3, p. 269-296.
[3] M. Benalili \& H. Boughazi - "On the second Paneitz-Branson invariant", Houston J. Math. 36 (2010), no. 2, p. 393-420.
[4] H. Brézis \& E. Lieb - "A relation between pointwise convergence of functions and convergence of functionals", Proc. Amer. Math. Soc. 88 (1983), no. 3, p. 486-490.
[5] E. Hebey - Introductions à l'analyse sur les variétés, Courant Lecture Notes in Mathematics, vol. 5, Diderot Éditeur, Arts et sciences, Paris, 1997.
[6] F. Madani - "Le problème de Yamabe avec singularités", Bull. Sci. Math. 132 (2008), no. 7, p. 575-591.
[7] R. Schoen \& S.-T. Yau - "Conformally flat manifolds, Kleinian groups and scalar curvature", Invent. Math. 92 (1988), no. 1, p. 4771.
[8] R. Schoen - "Conformal deformation of a Riemannian metric to constant scalar curvature", J. Differential Geom. 20 (1984), no. 2, p. 479495.
[9] N. S. Trudinger - "Remarks concerning the conformal deformation of Riemannian structures on compact manifolds", Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), p. 265-274.

Mohammed Benalili
Université Aboubekr Belkaïd
Faculty of Sciences
Dept. of Math. B.P. 119
Tlemcen, Algeria
m__benalili@mail.univ-tlemcen.dz

Hichem Boughazi
Université Aboubekr Belkaïd
Faculty of Sciences
Dept. of Math. B.P. 119
Tlemcen, Algeria
h_boughazi@mail.univ-tlemcen.dz

