Fefferman-Stein, Wainger and Sjölin proved optimal boundedness for certain oscillating multipliers on . In this article, we prove an analogue of their result on a compact Lie group.
Mots-clés : Oscillating multiplier, $ H^{p}$ spaces, Compact Lie groups, Fourier series.
@article{AMBP_2012__19_1_123_0, author = {Chen, Jiecheng and Fan, Dashan}, title = {Optimal boundedness of central oscillating multipliers on compact {Lie} groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {123--145}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {19}, number = {1}, year = {2012}, doi = {10.5802/ambp.307}, zbl = {1255.43002}, mrnumber = {2978316}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.307/} }
TY - JOUR AU - Chen, Jiecheng AU - Fan, Dashan TI - Optimal boundedness of central oscillating multipliers on compact Lie groups JO - Annales mathématiques Blaise Pascal PY - 2012 SP - 123 EP - 145 VL - 19 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.307/ DO - 10.5802/ambp.307 LA - en ID - AMBP_2012__19_1_123_0 ER -
%0 Journal Article %A Chen, Jiecheng %A Fan, Dashan %T Optimal boundedness of central oscillating multipliers on compact Lie groups %J Annales mathématiques Blaise Pascal %D 2012 %P 123-145 %V 19 %N 1 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.307/ %R 10.5802/ambp.307 %G en %F AMBP_2012__19_1_123_0
Chen, Jiecheng; Fan, Dashan. Optimal boundedness of central oscillating multipliers on compact Lie groups. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 123-145. doi : 10.5802/ambp.307. http://www.numdam.org/articles/10.5802/ambp.307/
[1] Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J., Volume 46 (1994), pp. 457-468 | DOI | MR | Zbl
[2] Interpolation of Operators, Pure and Applied Math., Academic Press, Florida, 1988 | MR | Zbl
[3] spaces on compact Lie groups, Ann. Fac Sci. Toulouse Math., Volume 6 (1997), pp. 429-479 | DOI | Numdam | MR | Zbl
[4] Approximation of functions by Bochner-Riesz means on compact Lie groups, Math. Z., Volume 216 (1994), pp. 131-145 | DOI | MR | Zbl
[5] Central Oscillating Multipliers on Compact Lie Groups, Math. Z., Volume 267 (2011), pp. 235-259 | DOI | MR
[6] Hardy Space Estimates on Wave Equations on Compact Lie Groups, J. Funct. Anal., Volume 259 (2010), pp. 3230-3264 | DOI | MR
[7] Decomposition of BMO functions on normal groups, Acta. Math. Sinica (Ser. A, Volume 32 (1989), pp. 345-357 | MR | Zbl
[8] Bochner-Riesz means of functions () on compact Lie groups, Lecture Notes in Math., Volume 1234 (1987), pp. 86-107 | DOI | MR | Zbl
[9] Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 569-645 | DOI | MR | Zbl
[10] Hardy space on sphere, Ph.D. Thesis, Washington University, St Louis, 1982
[11] Pointwise estimates for some kernels on compact Lie groups, Rend. Circ. Mat. Palerma, Volume 31 (1982), pp. 145-158 | DOI | MR | Zbl
[12] On the spectral synthesis problem for ()-dimensional subset of , Ark. Math., Volume 9 (1971), pp. 23-37 | DOI | MR | Zbl
[13] Calderón-Zygmund operators on compact Lie groups, Math. Z., Volume 216 (1994), pp. 401-415 | DOI | EuDML | MR | Zbl
[14] space of several variables, Acta Math., Volume 129 (1972), pp. 137-193 | DOI | MR | Zbl
[15] Oscillating multiplier on noncompact symmetric spaces, J. Reine Angew. Math., Volume 409 (1990), pp. 93-105 | EuDML | MR | Zbl
[16] A characterization of in terms of atoms, Studia Math., Volume 62 (1978), pp. 93-101 | EuDML | MR | Zbl
[17] Fourier transforms of surface-carried measures and differentiability of surface average, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 766-770 | DOI | MR | Zbl
[18] -boundedness of oscillating spectral multipliers on Riemannian manifolds, Ann. Math. Blaise Pascal, Volume 10 (2003) no. 1, pp. 133-160 | DOI | EuDML | Numdam | MR | Zbl
[19] On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981), pp. 267-315 | MR | Zbl
[20] An inequality for strongly singular integrals, Math Z., Volume 165 (1979), pp. 231-238 | DOI | EuDML | MR | Zbl
[21] Topics in Harmonic Analysis, Ann. of Math. Studies, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl
[22] Special trigonometric series in k dimensions, Mem. Amer. Math. Soc., 1965 | MR | Zbl
[23] A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1922 | JFM | MR
Cité par Sources :