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Optimal boundedness of central oscillating
multipliers on compact Lie groups

Jiecheng Chen
Dashan Fan

Abstract

Fefferman-Stein, Wainger and Sjölin proved optimal Hp boundedness for cer-
tain oscillating multipliers on Rd. In this article, we prove an analogue of their
result on a compact Lie group.

1. Introduction

Let G be a connected, simply connected, compact semisimple Lie group
of dimension n. In this paper, we will study the Hp(G) boundedness for
the oscillating multiplier operator

Tγ,β(f)(x) = Kγ,β ∗ f(x), γ ≥ 0 and 0 < β < 1.

Here Kγ,β is a central kernel defined by

KΩ,γ,β(y) =
∑

λ+δ∈Λ\{0}

ei‖λ+δ‖β

‖ λ+ δ ‖γ
dλχλ(ξ),

where y is conjugate to the element exp ξ in a fixed maximal torus of
G (the detailed definition can be found in the second section). Thus the
operator Tγ,β has the Fourier expansion

Tγ,β(f)(x) =
∑

λ+δ∈Λ\{0}

ei‖λ+δ‖β

‖ λ+ δ ‖γ
dλχλ ∗ f(x)

for any f ∈ C∞(G).

Keywords: Oscillating multiplier, Hp spaces, Compact Lie groups, Fourier series.
Math. classification: 43A22, 43A32, 43B25, 42B25.
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The formulation of Tγ,β is an analogue of the oscillating multiplier op-
erator Sγ,β(f) on Rd :

Sα,β(f)(x) =
∫

Rd
f̂(ξ)Ψ(|ξ|)m(ξ)ei〈x,ξ〉dξ,

where

m(ξ) = ei|ξ|
β

|ξ|γ

and Ψ(|ξ|) ∈ C∞(Rd), satisfying Ψ(|ξ|) = 0 for |ξ| < 1/2 and Ψ(|ξ|) = 1
for |ξ| > 1.

It is well known that the operator Sγ,β is bounded onHp(Rd) if and only
if |1/2− 1/p| ≤ γ/(dβ) for all 0 < p <∞ (see [14, 19, 20, 22]). We notice
that when 1 < p < ∞, the boundedness of Sγ,β has been generalized to
many different settings of Lie groups and manifolds (see [1, 5, 15, 18]). In a
recent paper [5], we established the following optimal Lp(G) boundedness
of Tγ,β on a compact Lie group.

Theorem 1.1. Let G be a connected, simply connected, compact semisim-
ple Lie group of dimension n. For 0 < β < 1, the operator Tγ,β is bounded
on Lp(G) if and only if | 1

2 −
1
p |≤

γ
nβ for all 1 < p <∞.

In [5], we are able to extend Theorem 1.1 to Hp(G) for 0 < p0 < p ≤ 1.
However, the method in [5] only allows us to obtain the result when p0 is
close to 1. Thus, the aim of this paper is to give a complete solution of
Theorem 1.1 by establishing the following optimal Hp boundedness for all
p > 0.

Theorem 1.2. Let G be a connected, simply connected, compact semisim-
ple Lie group of dimension n and 0 < β < 1. The operator Tγ,β is bounded
on Hp(G) if and only if | 1

2 −
1
p |≤

γ
nβ for all 0 < p <∞.

We want to point out that the extension of Theorem 1.1 to all 0 < p <
∞ is not trivial and actually it is quite involved, due to the structure of
a semi-simple Lie group. Our proof will use powerful results of Clerc [8],
in which the Weyl denominator and its derivatives are carefully estimated
based on the classification of the root system. This allows us to obtain
sharp estimates on the kernel and its derivatives. This same method was
recently also used in [6] to study the wave problem (β = 1).
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In order to prove the main theorem, we use a standard analytic inter-
polation argument (see [2]). Define an analytic family of operators

Tz,β(f)(x) =
∑

λ+δ∈Λ\{0}

ei‖λ+δ‖β

‖ λ+ δ ‖z
dλχλ ∗ f(x), z ∈ C.

By the Plancherel theorem, it is easy to see that
‖Tz,β(f)‖L2(G) � ‖f‖L2(G)

if <(z) = 0. Thus, to complete the proof of the sufficiency part of The-
orem 1.2, by the analytic interpolation theorem it suffices to show the
following endpoint estimate.

Proposition 1.3. Let p < 2β
β+2 and γp = nβ(1

p −
1
2). If <(z) = γp, then

‖Tz,β(f)‖Hp(G) � ‖f‖Hp(G) .

The plan of this paper is as follows: in Section 2, we will recall some
necessary notation and known results on a compact Lie group; the kernel
Kz,β and its derivatives will be carefully estimated in Section 3; we will
prove Proposition 1.3 in Section 4.

In this paper, we use the notation A � B to mean that there is a positive
constant C independent of all essential variables such that A ≤ CB. We
use the notation A ' B to mean that there are two positive constants c1
and c2 independent of all essential variables such that c1A ≤ B ≤ c2A.

Acknowledgments. The first author is supported by the NSFC Grant
10931001, 10871173.

2. Notation and known results

2.1. Some definitions
Let G be a connected, simply connected, compact semisimple Lie group
of dimensionn. Let g be the Lie algebra of G and τ the Lie algebra of a
fixed maximal torus T in G of dimension m. Let A be a system of positive
roots for (g, τ) so Card(A) = n−m

2 , and let δ = 1
2
∑
a∈A a.

Let | . | be the norm of g induced by the negative of the Killing form
B on gC, the complexification of g. The norm | . | induces a bi-invariant
metric d on G. Furthermore, since B|τC×τC is nondegenerate, given λ ∈
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homC(τC,C), there is a unique Hλ in τC such that λ(H) = B(H,Hλ)
for each H ∈ τC. We let 〈. , .〉 and ‖ . ‖ denote the inner product and
norm transferred from τ to homC(τ, iR) by means of this canonical iso-
morphism.

Let N = {H ∈ τ : expH = I}, where I is the identity in G. The weight
lattice P is defined by P = {λ ∈ τ : 〈λ, n〉 ∈ 2πZ for any n ∈ N} with
dominant weights defined by Λ = {λ ∈ P : 〈λ, a〉 ≥ 0 for any a ∈ A}.
Λ provides a full set of parameters for the equivalence classes of unitary
irreducible representation of G: for λ ∈ Λ, the representation Uλ has di-
mension

dλ =
∏
a∈A

〈λ+ δ, a〉
〈δ, a〉

and its associated character is

χλ(ξ) =
∑
w∈W ε(w) ei〈w(λ+δ),ξ〉∑

w∈W ei〈wδ,ξ〉

where ξ ∈ τ , W is the Weyl group, and ε(w) is the signature of w ∈ W .
Any function f ∈ L1(G) has the Fourier series∑

λ∈Λ
dλχλ ∗ f(x).

The oscillating multiplier

Tz,β(f)(x) =
∑

λ+δ∈Λ\{0}

ei‖λ+δ‖β

‖ λ+ δ ‖z
dλχλ ∗ f(x)

is initially defined on all f ∈ C∞. Thus Tz,β is a convolution operator
Tz,β(f)(x) = Kz,β ∗ f(x),

where Kz,β is a central kernel defined by

Kz,β(y) =
∑

λ+δ∈Λ\{0}

ei‖λ+δ‖β

‖ λ+ δ ‖z
dλχλ(ξ),

and exp ξ ∈ T is conjugate to y. Let Q be a fixed fundamental domain of
T and

Qν = {ξ + ν : ξ ∈ Q}, ν ∈ N.

Up to sets of measure zero, {Qν} is a sequence of mutually disjoint subsets
in the Lie algebra τ .
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Any element y ∈ G is conjugate to exactly one element in exp(Q). We
denote y ∼ exp ξ if y is conjugate to exp ξ.

2.2. Hardy spaces Hp(G)
There are many equivalent definitions of the Hardy space Hp. The reader
can see [3, 4, 7, 8, 9, 10, 11, 13, 16] and the references therein for more
details and background on the Hardy space. Below, we briefly review the
definition of Hp by using the heat kernel, and the atomic characterization
of Hardy spaces.

For the heat kernel (see [21])

Wt =
∑

λ+δ∈Λ
e−t{‖λ+δ‖2−‖δ‖2}dλχλ,

the Hardy space Hp(G), 0 < p < ∞, is the collection of all distributions
f ∈ S′(G) such that

‖f‖Hp(G) = ‖ sup
t>0
{|Wt ∗ f |}‖Lp(G) <∞.

An exceptional atom is an L∞ function bounded by 1. In order to define
a regular atom, one considers a faithful unitary representation Π of G such
that Π(G) ≈ U(L,C). Then G can be identified as a submanifold in a real
vector space V underlying End(CL). A regular p-atom for 0 < p ≤ 1 is a
function a(x) supported in a ball B(x0, ρ) such that

‖a‖L2(G) ≤ ρ
−n( 1

p
− 1

2 )
,

∫
G
a(x)℘(Π(x))dx = 0,

where ℘ is any polynomial on V of degree less than or equal to ` for any
integer ` ≤ [n(1

p − 1)], the integer part of n(1
p − 1).

The space Hp
a(G), 0 < p ≤ 1, is the space of all f ∈ S′(G) having the

form
f =

∑
ckak with

∑
|ck|p <∞,

where each a(x) is either a regular p-atom, or an exceptional atom. The
“norm” ‖f‖Hp

a
is the infimum of all expressions (

∑
|ck|p)1/p for which we

have a representation f =
∑
ckak. As we discussed in [5] (see also [3], [4]),

to show that the operator Tz,β is bounded on Hp(G), it suffices to prove

‖Tz,β(a)‖Lp(G) � 1
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uniformly for any regular p-atom a(x) with support in B(I, ρ), where
0 < ρ < r and r is a fixed sufficiently small number.

2.3. Decomposing the Weyl denominator
Denote

D(θ) =
∑
w∈W

ei<wδ,θ>.

D(θ) is called the Weyl denominator and it satisfies

D(θ) =
∏
a∈A

sin α(θ)
2 ,

where
α(θ) = 〈α, θ〉.

In this section, we introduce some notation in [8]. Let Bs be the set of all
simple roots in A and let BL be the set of all largest roots. For θ ∈ Q,
introduce the following sets

I = Iθ = {α ∈ Bs : α(θ) ≤ 1
R
}

J = Jθ = {β ∈ BL : β(θ) ≥ 2π − 1
R
}.

When R is a large number, elements in Iθ and Jθ are independent. We
define two facets

FI,J = {ξ ∈ Q : α(ξ) = 0 for α ∈ I, β(ξ) = 2π for β ∈ J,

0 < α(ξ) < 2π for α ∈ Bs\I, 0 < β(ξ) < 2π for β ∈ BL\J}
and let FI,J be the affine subspace generated by FI,J so that

FI,J = {ξ ∈ τ : α(ξ) = 0 for α ∈ I and β(ξ) = 2π for β ∈ J}.

A positive root γ is R−singular of type I at θ, if the following equivalent
conditions are satisfied:

(i) γ{FI,J} = {0},
(ii) γ{FI,J} = {0},
(iii) γ can be written as

γ =
∑
α∈I

nαα, nα ∈ N.
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A positive root γ is R-singular of type II at θ, if the following equivalent
conditions are satisfied:

(i) γ{FI,J} = {2π},
(ii) γ{FI,J} = {2π},
(iii) γ can be written as, for some β ∈ J

γ = β −
∑
α∈I

nαα, nα ∈ N.

Both R−singular roots of types I and II are called singular roots. By this
definition, it is easy to see that if γ is a positive non-singular root, then

1
R
< γ(θ) < 2π − 1

R
.

For a singular root α of type I, let Sα be the orthogonal symmetry with
respect to the hyperplane α = 0. For a singular root β of type II, let S̃β
be the orthogonal symmetry with respect to the hyperplane α = 2π. Let
WI,J be the group generated by

{Sα}α∈I ∪ {S̃β}β∈J .

This group is a finite subgroup of the affine Weyl group. Now we define

Γθ = Γ(R)
θ = convex hull of {wθ}w∈WI,J

.

Also, we write the root system

A = As ∪Ans
where As is the set of all singular (R−singular) roots and Ans is the set
of all non-singular roots. Denote by µR the number of singular roots and
denote

DR(θ) =
∏

a∈Ans
sin(〈α, θ〉2 ).

Thus
D(θ) = DR(θ)

∏
a∈As

sin(〈α, θ〉2 ).

The above definition of D(θ) and Γ(R)
θ can be defined on the torus T

itself. In fact, if x ∈ T , then x = exp θ for some θ in Q. We define

d(exp θ) = D(θ), and Γ(R)
x = exp Γ(R)

θ .

129



J. Chen & D. Fan

Some properties of the domain Γ(R)
x can be found in [8]. In particular, it

is known from Lemma 2.9 in [8] that there exists a constant c such that∣∣∣DR(ξ)
∣∣∣ ≥ c ∣∣∣DR(θ)

∣∣∣ (2.1)

for all ξ in Γ(R)
θ .

2.4. Derivatives on central functions.
Fixing a vector basis of gC, say Y1, Y2, . . . , Yn, we denote the element
Y j1

1 Y j2
2 · · ·Y jn

n by Y J , where J = (j1, . . . , jn). As J varies over all possible
n−tuples, the {Y J} forms a basis of the complex universal enveloping
algebra U(g) of g. Similarly, we fix a basis Θ1, . . . ,Θm of τC and use the
notation ΘI for Θi1

1 Θi2
2 · · ·Θim

m , with I = (i1, . . . , im). We can find the
following two theorems in [8].

Theorem 2.1. Let p, q be positive integers. Assume that f is a C∞ central
function. Then for each I with |I| ≤ p and J with |J | ≤ q, there exists a
constant C such that∣∣∣ΘIY Jf(y)

∣∣∣ � C p+q∑
j=0

Rj
∑

|K|≤p+q−j
sup
v∈Γ(R)

y

∣∣∣ΘKf(v)
∣∣∣ .

Theorem 2.2. Let p be a positive integer. Assume f(y) = d(y)−1g(y) and
that g is a C∞ central function which is skew-invariant by the Weyl group.
For each I with |I| ≤ p, there exists a constant C such that∣∣∣ΘIf(y)

∣∣∣ � C ∣∣∣dR(y)
∣∣∣−1 p∑

j=0
Rj

∑
|K|≤p+µR−j

sup
v∈Γ(R)

y

∣∣∣ΘKg(v)
∣∣∣ .

3. Estimates on the kernel Kz,β, <(z) > n

In this section, we denote γ = <(z) and assume γ > n. First, we recall the
following lemma, which is an easy modification of results in [12] or [17].

Lemma 3.1. Let A ⊆ Rm denote an open set and Φ ∈ C∞0 (A). If Ψ ∈
C∞(A) satisfies

| det(∂2/∂xi∂xjΨ(x))| ≥ C > 0
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for all x ∈ supp(Φ), then for large |λ|,∣∣∣ ∫
A
ei(λΨ(x)+〈ξ,x〉)Φ(x)dx

∣∣∣ � |λ|−m/2‖Φ‖C2m.

By the definition, it is easy to see

Kz,β(y) =

∑
λ+δ∈Λ\{0}

ei‖λ+δ‖β

‖λ+δ‖z (
∏
a∈A
〈δ + λ, a〉)

∑
w∈W ε(w) ei〈w(λ+δ),ξ〉

D(ξ)
∏
α∈A
〈α, δ〉

=
(
∏
a∈A

∂
∂α)

∑
λ∈P\{0}

ei‖λ‖
β

‖λ‖z ei〈λ,ξ〉

D(ξ)
∏
a∈A
〈a, δ〉

,

where y is conjugate to exp ξ ∈ T .
Choose a C∞ radial function ψ on Rm such that

ψ(t) = 0 if t ∈ (0, c1) and ψ(t) = 1 if t ∈ (c2,∞),
where c1 and c2 are two fixed positive numbers such that

Kz,β(y) =
(
∏
a∈A

∂
∂α)

∑
µ∈P

ei‖µ‖
β

‖µ‖z ψ(‖µ‖) ei〈µ,ξ〉

D(ξ)
∏
a∈A
〈a, δ〉

.

Since <(z) = γ > n, the above summation is absolutely convergent. By
the Poisson summation formula (see [11]) we obtain

Kz,β(y) '

∑
ν∈N

(
∏
a∈A

∂
∂α)<ν(ξ)

D(ξ)
∏
a∈A
〈a, δ〉

,

where

<0(ξ) =
∫

Rm

ei‖H‖
β

‖H‖z
ψ(‖H‖)e−i〈ξ,H〉dH,

and
<ν(ξ) = <0(ξ + ν).

For simplicity, we write

<(ξ) = <0(ξ) and Θ(H ′) = (
∏
a∈A
〈α, H

‖H‖
〉).
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Also, without loss of generality, we may use the Euclidean norm | . |
instead of ‖ . ‖. Thus, for ν ∈ N,

(
∏
a∈A

∂

∂α
)<ν(ξ) = (

∏
a∈A

∂

∂α
)<(ξ + ν) '

∫
Rm

eiΦ(H,ξ+ν)

|H|z−
n−m

2
Θ(H ′)ψ( |H| )dH,

where
Φ(H, ξ + ν) = |H|β − 〈ξ + ν,H〉

is the phase function.
Fix a small ρ > 0. Let ϕ(t) be a C∞ function on (0,∞) that satisfies

ϕ(t) = 0 if t < 0.05 , ϕ(t) = 1 if t > 0.1,
and let

ϕ∞(t) = ϕ(ρt), ϕ0(t) = 1− ϕ(ρt).
For each ν ∈ N, we write

(
∏
a∈A

∂

∂α
)<ν(ξ) = (

∏
a∈A

∂

∂α
) <ν,0(ξ) + (

∏
a∈A

∂

∂α
) <ν,∞(ξ),

where

(
∏
a∈A

∂

∂α
) <ν ,0 (ξ) =

∫
Rm

eiΦ(H,ξ+ν)

|H|z−
n−m

2
Θ(H ′)ψ( |H| )ϕ0(|H|)dH

and

(
∏
a∈A

∂

∂α
) <ν,∞(ξ) =

∫
Rm

eiΦ(H,ξ+ν)

|H|z−
n−m

2
Θ(y′)ψ(|H|)ϕ∞(|H|)dH.

Furthermore, for y ∼ exp ξ, we define four central kernels:

=∞,0(y) =

∑
ν∈N\{0}

(
∏
a∈A

∂
∂α)<ν,0(ξ)

D(ξ)
∏
a∈A
〈a, δ〉

, =∞,∞(y) =

∑
ν∈N\{0}

(
∏
a∈A

∂
∂α)<ν,∞(ξ)

D(ξ)
∏
a∈A
〈a, δ〉

,

and

=0,0(y) =
(
∏
a∈A

∂
∂α)<0,0(ξ)

D(ξ)
∏
a∈A
〈a, δ〉

, =0,∞(y) =
(
∏
a∈A

∂
∂α)<0,∞(ξ)

D(ξ)
∏
a∈A
〈a, δ〉

.

Then, we decompose the kernel Kz,β by
Kz,β(y) '=0,∞(ξ) + =∞,∞(ξ) + =0,0(ξ) + =∞,0(ξ).

We will give different estimates on these kernels.
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Lemma 3.2. Fix a small positive ρ such that ρ ≤ 1/c1. Let ξ ∈ Qν ∩{ξ :
|ξ| > 1000nρ1−β}. For any positive integer L and N = γ − n+m

2 + L, we
have

|=0,∞(ξ)| � |ξ|−L ρN

| D(ξ)
∏
a∈A
〈a, δ〉 |

, (3.1)

and
‖=∞,∞‖L1(G) � ρ

N .

Proof. For |ξ| ≥ 1000nρ1−β, there is at least one coordinate ξj satisfying
|ξj | ≥ 1000ρ1−β.

On the other hand, if H lies on the support of ϕ∞ we have
|H|β−1 ≤ 100ρ1−β.

Thus we have ∣∣∣∣∣ ∂∂yj Φ(H, ξ)
∣∣∣∣∣ ≥ |ξj | − β | H |β−1� |ξj | ' |ξ| .

By this observation, we perform integration by parts on Hj−variable to
obtain ∣∣∣∣∣

∫
Rm

eiΦ(H,ξ)

| H |z−
n−m

2
Θ(H ′)ϕ∞(| H |)dH

∣∣∣∣∣ � |ξ|−L ργ−n+m
2 +L.

This shows (3.1). As a consequence, we obtain∣∣∣∣∣
∫

Rm

eiΦ(H,ξ+ν)

| H |z−
n−m

2
Θ(H ′)ϕ∞(| H |)dH

∣∣∣∣∣ � |ξ + ν|−L ργ−
n+m

2 +L.

Thus, by the Weyl integral formula we have

‖=∞,∞‖L1(G) �
∑

ν∈N\{0}
ργ−

n+m
2 +L

∫
Q
|ξ + ν|−L |D(ξ)| dξ � ρN

after choosing a suitably large L and letting γ − n+m
2 + L = N . �

Lemma 3.3. Assume |ξ| > 1000ncβ−1
1 . We have, for any multi-index J

and any positive integer L,∣∣∣∣∣( ∂∂ξ )J
∫

Rm

eiΦ(H,ξ)

| H |z−
n−m

2
Θ(H ′)ϕ0(| H |)ψ( |H| )dH

∣∣∣∣∣ � (1 + |ξ|)−L.

133



J. Chen & D. Fan

Proof. It is easy to see that

( ∂
∂ξ

)J
∫

Rm

eiΦ(H,ξ)

|H|z−
n−m

2
Θ(H ′)ϕ0(‖H‖)ψ( |H| )dH

=
|J |∑
k=1

∫
Rm

eiΦ(H,ξ)

|H|z−
n−m

2
Pk(H)Θ(H ′)ϕ0(|H|)ψ( |H| )dH =

|J |∑
k=1
Lk(ξ),

where Pk is a homogeneous polynomial of degree k. Without loss of gen-
erality, we may write, for each k,

Lk(ξ) =
∫

Rm

eiΦ(H,ξ)

| y |z−
n−m

2 −k
Θ(H ′)ψ( |H| )ϕ0(|H|) dH.

The support condition of ψ implies that the phase function satisfies
n∑
j=1

∣∣∣∣∣ ∂

∂Hj
Φ(H, ξ)

∣∣∣∣∣ � |ξ| .
Thus the lemma follows by integration by parts N times for a suitably
large N . �

Lemma 3.4. Assume 1000ncβ−1
1 ≥ |ξ| > 1000ρ1−β. For any multi-index

J , if
(α− n

2 − |J |)
1− β − m

2 < 0,

then we have∣∣∣∣∣( ∂∂ξ )J
∫

Rm

eiΦ(H,ξ)

| H |z−
n−m

2
Θ(H ′)ϕ0(|H|)ψ(|H|) dH

∣∣∣∣∣ � |ξ| (γ−
n
2−|J|)

1−β −m2 .

Proof. As in the previous lemma, we need to show for each k,

|Lk(ξ)| =
∣∣∣∣∣
∫

Rm

eiΦ(H,ξ)

|H|z−
n−m

2 −k
Θ(H ′)ψ( |H| )ϕ0(|H|)dH

∣∣∣∣∣
�| ξ |

(γ−n2−k)
1−β −m2 +1.

Choose C∞ functions Γj(t), j = 1, 2, 3 such that

Γ1(t) = 1 if βtβ−1 > 3 and Γ1(t) = 0 if βtβ−1 ≤ 2,

Γ2(t) = 1 if βtβ−1 <
0.1
n

and Γ2(t) = 0 if βtβ−1 ≥ 0.2.
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Let
Γ3(t) = 1− Γ1(t)− Γ2(t),

and
Γj(t, ξ) = Γj(|ξ|

1
1−β t), j = 1, 2, 3.

Therefore,

Lk(ξ) =
3∑
j=1

∫
Rm

eiΦ(H,ξ)

|H|z−
n−m

2 −k
Γj(|ξ|

1
1−β |H|)Θ(H ′)ψ(|H|)ϕ0(|H|) dH

=
3∑
j=1
Lk,j(ξ).

By polar coordinates,

Lk,1(ξ) '
∫
Sm−1

Θ(H ′)

×
{∫ ∞

0

eig(t)

tz−
n−m

2 −k−m+1
Γ1(t |ξ|

1
1−β )ψ(t)ϕ0(t)dt

}
dσ(H

′
),

where Sm−1 is the unit sphere in Rm with the induced Lebesgue measure
dσ(H ′), and the phase function

g(t) = tβ − it〈ξ,H ′〉

satisfies ∣∣∣∣ ddtg(t)
∣∣∣∣ � tβ−1, and d

dt

1
g′(t) = β(1− β)tβ−2

g′(t)2 = O
( 1
tβ

)
,

if t lies in the support of Γ1(t |ξ|
1

1−β ). By this observation, it is easy to see
that after using integration by parts N times for a sufficiently large N ,
we have

|Lk,1(ξ)| � 1 . (3.2)
For the term Lk,2(ξ), it is easy to check that, in some direction Hj ,∣∣∣∣∣ ∂

∂Hj
Φ(H, ξ)

∣∣∣∣∣ ≥ |ξ| � |H|
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if H lies in the support of Γ2(H |ξ|
1

1−β ). Again, performing integration by
parts in the Hj direction for sufficiently many times, we obtain

|Lk,2(ξ)| � 1. (3.3)
For the term Lk,3(ξ), changing variables we have

Lk,3(ξ) '

|ξ|−i=(z)/(β−1)

|ξ|
(γ−n+m

2 −k)
β−1

∫
Rm

eiΨ(H,ξ)

| H |z−
n−m

2 −k
Γ3(|H|)Θ(H ′)(ψϕ0)(|H| |ξ|

1
β−1 ) dH,

where
Ψ(H, ξ) = |ξ|

β
β−1 |H|β − |ξ|

1
β−1 〈ξ′, H〉.

Recalling that the support of Γ3 lies in the set

S =
{
y : (0.1

βn
)1−β ≤ |H| ≤ ( 3

β
)1−β

}
,

without loss of generality, we may also assume that |ξ| is small such that

|H| |ξ|
1

β−1 > c2 for all H ∈ S.
We now have

Lk,3(ξ) ' |ξ|
−i=(z)/(β−1)

|ξ|
(γ−n+m

2 −k)
β−1

∫
Rm

eiΨ(H,ξ)Γ̃3(|H|)Θ(H ′)ϕ0(ρ|H| |ξ|
1

β−1 )dH,

where
Γ̃3(|H|) = Γ3(|H|)

|H|z−
n−m

2 −k

is a C∞function supported in the set S. By Lemma 3.1 we have

|Lk,3(ξ)| � |ξ|
(γ−n+m

2 −k)
1−β |ξ|

mβ
2(1−β) = |ξ|

(γ−n2−k)
1−β −m2 . (3.4)

We now obtain the lemma by combining (3.2),(3.3) (3.4). �

Next, we fix a number η such that d(u, I) ≤ 2η implies α($) ≤ π for
all α ∈ A, where u ∼ exp$.

Lemma 3.5. Assume d(u, I) ≤ η. For any non-negative integer L and
any multi-index M with |M | = q, we have∣∣∣YM=∞,0(u)

∣∣∣ � Rq | dR(u) |−1 ∑
ν 6=0
|ν|−L .
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Proof. By [8], d(u)=∞,0(u) is skew-invariant by the Weyl group. Thus we
invoke Theorems 2.1 and 2.2 and (2.1) to obtain∣∣∣YM=∞,0(u)

∣∣∣ � ∑
|J |≤q

sup
x∈Γ(R)

u

∣∣∣ΘJ =∞,0(x)
∣∣∣ � Rq|dR(u)|−1

×
∑
|J |≤q

∑
|I|≤|J |+µR

sup
x∈Γ(R)

u

sup
y∈Γ(R)

x

∣∣∣∣∣∣( ∂∂ξ )I
∑

ν∈N\{0}
(
∏
a∈A

∂

∂α
)<ν,0(ξ)

∣∣∣∣∣∣ ,
where exp ξ ∼ y and

(
∏
a∈A

∂

∂α
)<ν,0(ξ) '( ∂

∂ξ
)I
∫

Rm

eiΦ(H,ξ+ν)

| H |z−
n−m

2
Θ(H ′)ϕ0(| H |)ψ( |H| )dH .

Observing that there is a σ > 0 such that for all ξ ∈ Q,
|ξ + ν| ≥ σ if ν 6= 0,

and
|ξ + ν| ' |ν| if |ν| is large,

we obtain Lemma 3.5 from Lemma 3.3 and 3.4. �

Now we turn to estimate Y I=0,0(u). We have the following estimate.

Lemma 3.6. Let the number η be the same as in Lemma 3.5. For any
multi-index I with |I| = q, if

d(u, I) ≤ η and N > −γ + n− 1
2 + q,

then we have∣∣∣Y I=0,0(u)
∣∣∣ � sup

y∈Γ(R)
u

(|ξ|−
(γ−n2 )−q
β−1 | ξ |−

n
2 ) + |ξ|−N−

n+1
2 ),

where y ∼ exp ξ.

Proof. By Theorem 2.1, without loss of generality, we may write∣∣∣Y I=0,0(u)
∣∣∣ � ∑

|J |=q
sup
y∈Γ(R)

u

∣∣∣∣( ∂∂ξ )J=0,0(y)
∣∣∣∣

By [22, Ch.4] (or see [8]), we have

<0,0(ξ) '
∫ ∞

0
eit

β
ψ(t)ϕ0(t)Vm−2

2
(t | ξ |)t−z+m−1dt,
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where

Vm−2
2

(t) =
Jm−2

2
(t)

t
m−2

2
,

and Jm−2
2

(t) is the Bessel function of order m−2
2 . An easy computation

shows (see [5]),

(
∏
a∈A

∂

∂α
)Vm−2

2
(t | ξ |) ' (

∏
a∈A
〈α, ξ〉)Vn−2

2
(t | ξ |)tn−m.

Thus, we obtain

=0,0(y) '
(
∏
a∈A
〈α, ξ〉)

(
∏
a∈A

sin 〈α,ξ〉2 )

∫ ∞
0

eit
β
ψ(t) ϕ0(t)Vn−2

2
(t | ξ |)t−z+n−1dt.

By choosing a sufficiently large R, without loss of generality, we may
assume α(ξ) ≤ π for all α ∈ A. Thus, taking the advantage that

(
∏
a∈A
〈α, ξ〉)

(
∏
a∈A

sin 〈α,ξ〉2 )

is an analytic function, we may assume∣∣∣∣( ∂∂ξ )J=0,0(exp ξ)
∣∣∣∣

�
∣∣∣∣( ∂∂ξ )J

∫ ∞
0

eit
β
ψ(t) ϕ0(t)Vn−2

2
(t | ξ |)t−z+n−1dt

∣∣∣∣ .
Using a derivative formula for the Bessel function (see [23]) we have∣∣∣∣( ∂∂ξ )J=0,0(exp ξ)

∣∣∣∣ ≤ q∑
k=0
|℘k(ξ)|

where

℘k(ξ) =
q∑

k=0

Pk(ξ)
| ξ |

n−2
2 +k

∫ ∞
0

eit
β
ϕ0(t)ψ(t)Jn−2

2 +k(t | ξ |)t
−z+n

2 +kdt,

and Pk is a homogeneous polynomial of degree k.
For each k, using the asymptotic expansion of the Bessel function (see

[23]), for any positive integer N we have
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℘k(ξ) =
N∑
µ=0

aµ
Pk(ξ)

| ξ |
n−1

2 +µ+k

∫ ∞
0

eit
β
e−it|ξ| ϕ0(t)ψ(t)t−z+

n−1
2 −µ+kdt

+
N∑
µ=0

bµ
Pk(ξ)

| ξ |
n−1

2 +k+µ

∫ ∞
0

eit
β
eit|ξ|ϕ0(t)ψ(t)t−z+

n−1
2 −µ+kdt

+O
( Pk(ξ)
| ξ |

n+1
2 +N+k

∫ ∞
0

ϕ0(t)ψ(t) dt

tz−
n−1

2 +N+1−k

)

�
N∑
µ=0
| Fk,µ(ξ)|+O

( 1
|ξ|

m+1
2 +N

)
,

where

Fk,µ(ξ) = 1
| ξ |

n−1
2 +µ

∫ ∞
0

eit
β
e±it|ξ| ϕ0(t)ψ(t)t−z+

n−1
2 −µ+kdt.

Let Γj , j = 1, 2, 3 be defined in Lemma 3.4. We write

Fk,µ(ξ) =
3∑
j=1
Fk,µ,j(ξ),

where, for simplicity of notation, we write

Fk,µ,j(ξ) = 1
| ξ |

n−1
2 +µ

∫ ∞
0

eit
β
e±it|ξ| ϕ0(t)Γj(t |ξ|

1
1−β )ψ(t)t−z+

n−1
2 −µ+kdt

for j = 1, 2, 3.
By the same argument as we estimate Lk,1and Lk,2 in Lemma 3.4, we

have
|Fk,µ,1(ξ)|+ |Fk,µ,2(ξ)| � 1.

By changing variables we have that

Fk,µ,3(ξ) = |ξ|
−γ+n−1

2 −µ+k+1
β−1 |ξ|−i=(z)/(β−1)

| ξ |
n−1

2 +µ

×
∫ ∞

0
eiφ±(t,ξ) (ϕ0ψ)(|ξ|

1
β−1 t)Γ3(t)t−z+

n−1
2 −µ+kdt,

where
φ±(t, ξ) = |ξ|

β
β−1 tβ ± t.
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Thus, by Lemma 3.1 and an easy computation we have

|Fk,µ,3(ξ)| � |ξ|
−γ+n−1

2 +k+1
β−1

| ξ |
n−1

2
|ξ|

β
2(1−β)

|ξ|
µ

1−β

| ξ |µ
.

Therefore,
q∑

k=0
|℘k(ξ)| �

q∑
k=0

N∑
µ=0

3∑
j=1
|Fk,µ,j(ξ)|+O( 1

| ξ |
m+1

2 +N
)

�
q∑

k=0

N∑
µ=0

|ξ|
−γ+n−1

2 +k+1
β−1

| ξ |
n−1

2
|ξ|

β
2(1−β)

|ξ|
µ

1−β

| ξ |µ
+O( 1

| ξ |
m+1

2 +N
)

� |ξ|
−γ+n

2
β−1 |ξ|

q
β−1 | ξ |−

n
2 +O( 1

| ξ |
m+1

2 +N
).

This completes the proof of the lemma. �

Lemma 3.7. Let the number η be the same as in Lemma 3.5. If d(u, I) >
η

100 then for any multi-index M with |M | = q and any L > 0,

| YM (=0,0(u) + =∞,0(u)) |� Rq | dR(u) |−1

1 +
∑
ν 6=0
|ν|−L

 .
Proof. Observe that (=0,0(u)+=∞,0(u))d(u) is skew-invariant by the Weyl
group. The proof is the same as that of Lemma 3.5. �

4. Proofs of the theorem

4.1. Hp Boundedness Of Tz,β

We will prove Proposition 1.3 in this section. Precisely, we will prove the
Hp(G) boundedness of the operator Tz,β with

<(z) = γp = nβ(1
p
− 1

2).

Observing that the assumption

p <
2β
β + 2
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implies γp > n, we can use the estimates of Kz,β obtained in Section 3.
Moreover, as mentioned in Section 2, to prove the Hp boundedness of Tz,β
it suffices to prove

‖ Tz,β(a) ‖Lp(G)� 1,
for any p-atom a(x) of support in B(I, ρ) with sufficiently small ρ.

Let ς = 1− β. We have

‖ Tz,β(a) ‖pLp=
∫
d(x,I)≤104nρς

| Tz,β(a)(x) |p dx

+
∫
d(x,I)>104nρς

| Tz,β(a)(x) |p dx = I1 + I2.

By Hölder’s inequality, we have

I1 �‖ Tz,β(a) ‖pL2(G) ρ
2−p

2 nς �‖ a ‖p
L2
−ap (G) ρ

2−p
2 nς

�‖ a ‖pLr(G) ρ
(1− 2

p
)nς
, 1/2 = 1/r − αp/n.

Note 1
p −

1
2 = γp

nβ and ς = 1− β. An easy computation shows

I1 � ρpγp−n(1−p/2)ρ
2−p

2 ςn � 1.
By Hölder’s inequality and Lemma 3.2, we have∫

d(x,I)>104nρς

∣∣∣∣∫
G
a(y)=∞,∞(xy−1)dy

∣∣∣∣p dx
� ‖a‖L1(G) ‖ =∞,∞ ‖L1(G)� 1.

Using Hölder’s inequality and Lemma 3.2 again , we have∫
d(x,I)>104nρς

∣∣∣∣∫
G
a(y)=0,∞(xy−1)dy

∣∣∣∣p dx
� ‖a‖L1(G)

∫
d(x,I)>84nρς

| =0,∞(x) | dx

� ρ(γp−n+m
2 +L)ρ−

n
p

+n
∫
{|θ|≥10nρς}∩Q

| D(θ) | |θ|−L dθ � 1

if we choose a large positive integer L.
It remains to show∫

d(x,I)>104nρς
|
∫
G
a(y)(=∞,0(xy−1) + =0,0(xy−1))dy |p dx � 1.
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Let η be the number defined in Lemma 3.6 and let n0 = 2[np − n] + 2.
Using the cancellation condition of a, we have∫

G
a(y)=∞,0(xy−1)dy

=
∫
G
a(y){=∞,0(xy−1)− T xn0(=∞,0(y))}dy

where T xn0(=∞,0) is the Taylor polynomial of =∞,0 at x. Hence∣∣∣∣∫
G
a(y)=∞,0(xy−1)dy

∣∣∣∣
� ρn0+1

∫
B(I,ρ)

|a(y)| dy sup
z∈B(x,ρ),|J |≤n0+1

∣∣∣Y J=∞,0(z)
∣∣∣

� ρ−
n
p

+n+1+n0 sup
z∈B(I,ρ),|J |≤n0+1

∣∣∣LxY J=∞,0(z)
∣∣∣ .

where Lx is the left shift operator defined by Lxf(y) = f(xy) for any
function f . From Lemma 3.4.4 in [8], we know that dR(x) ' dR(z) if the
distance d(x, z) of x and z is sufficiently small. Observe that we may fix
any small r > 0 and assume ρ ≤ r/100 in our proof. Choosing R = 1√

ρ ,
by Lemma 3.5 we have that

sup
z∈B(I,ρ),|J |≤n0+1

{
∣∣∣LxY J=∞,0(z)

∣∣∣ � ρ−n0
2 | dR(x) |−1 ∑

ν 6=0
|ν|−L ,

for any positive integer L. Thus∫
104nρς<d(x,I)≤ η2

|
∫
B(I,ρ)

a(y)=∞,0(xy−1)dy |p dx � 1.

Replacing Lemma 3.5 by Lemma 3.7, we use a similar argument to obtain∫
d(x,I)> η

2

|
∫
B(I,ρ)

a(y)(=∞,0(xy−1) + =0,0(xy−1))dy |p dx � 1.

Finally, by the cancellation of a we obtain∫
104nρς<d(x,I)≤ η2

|
∫
B(I,ρ)

a(y)=0,0(xy−1)dy |p dx

=
∫

104nρς<d(x,I)≤ η2
|
∫
B(I,ρ)

a(y){=0,0(xy−1)− T xq (=0,0(y))}dy |p dx
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� ρ−n+pn+pq
∫

104nρς<d(x,I)≤ η2
| sup
z∈B(I,ρ),|J |≤q+1

{
∣∣∣LxY J=0,0(z)

∣∣∣p dx,
where q is a suitably large number such that

q + n− 1
2 − γp > 1.

Choosing N = q + n−1
2 − γp + 1, by Lemma 3.6 we have∫

104nρς<d(x,I)≤ η2
|
∫
B(I,ρ)

a(y)=0,0(xy−1)dy |p dx

� ρ−n+pn+pq
∫
|θ|>94nρς

| θ |−p(
γp−n2
β−1 )−pm2 | θ |

pq
β−1 | D(θ) |2−p dθ

+O
(
ρ−n+pn+pq

∫
|θ|>10ρς

|θ|−pN−
n+1

2 p | D(θ) |2 dθ
)

� ρ−n+pn+pqρp(γp−
n
2 )+(1−β)(−n2 p−

pq
1−β+n) + 1

� ρpγp−βn+npβ
2 + 1 = 2.

This proves the Hp boundedness of Tz,β , which completes the proof of
Proposition 1.3 and the sufficiency part of Theorem 1.2.

4.2. Proof Of The Necessity Part In Theorem 1.2
Recall that we define the analytic family

Tz,β(f)(x) = Kz,β(f) ∗ f(x) =
∑

λ+δ∈Λ\{0}

ei‖λ+δ‖β

‖ λ+ δ ‖z
dλχλ ∗ f(x), z ∈ C.

In [5], using the analytic interpolation, we proved
‖Tγ,β(f)‖Hp(G) � ‖f‖Hp(G) (4.1)

if and only if
∣∣∣1p − 1

2

∣∣∣ ≤ γ
nβ for all 1 ≤ p <∞.

Clearly, (4.1) is also a necessity condition for the Hp boundedness of
Tγ,β for 0 < p ≤ 1. Otherwise, an analytic interpolation on the family
{Tz,β} would yield a contradiction to the proven case for p > 1.
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