We consider the fragmentation equation
Mots-clés : Non-linear inverse problem, Size-structured partial differential equation, Fragmentation equation, Mellin transform, Functional equation
@article{AIHPC_2018__35_7_1847_0, author = {Doumic, Marie and Escobedo, Miguel and Tournus, Magali}, title = {Estimating the division rate and kernel in the fragmentation equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1847--1884}, publisher = {Elsevier}, volume = {35}, number = {7}, year = {2018}, doi = {10.1016/j.anihpc.2018.03.004}, mrnumber = {3906858}, zbl = {1406.35427}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/} }
TY - JOUR AU - Doumic, Marie AU - Escobedo, Miguel AU - Tournus, Magali TI - Estimating the division rate and kernel in the fragmentation equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1847 EP - 1884 VL - 35 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/ DO - 10.1016/j.anihpc.2018.03.004 LA - en ID - AIHPC_2018__35_7_1847_0 ER -
%0 Journal Article %A Doumic, Marie %A Escobedo, Miguel %A Tournus, Magali %T Estimating the division rate and kernel in the fragmentation equation %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1847-1884 %V 35 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/ %R 10.1016/j.anihpc.2018.03.004 %G en %F AIHPC_2018__35_7_1847_0
Doumic, Marie; Escobedo, Miguel; Tournus, Magali. Estimating the division rate and kernel in the fragmentation equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1847-1884. doi : 10.1016/j.anihpc.2018.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.004/
[1] Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, Volume 6 (2013) no. 2, pp. 219–243 | DOI | MR | Zbl
[2] Stability of weak turbulence Kolmogorov spectra, Transl. Am. Math. Soc., Volume 182 (1998), pp. 31–81 | MR | Zbl
[3] Fragmentation energy, Adv. Appl. Probab., Volume 37 (2005) no. 2, pp. 553–570 | MR | Zbl
[4] A Basic Course in Probability Theory, Universitext, Springer, New York, 2007 | MR | Zbl
[5] Inverse problems for a class of conditional probability measure-dependent evolution equations, 2015 (arXiv preprint) | arXiv | MR
[6] Estimating the division rate of the self-similar growth-fragmentation equation, Inverse Probl., Volume 30 (28 January 2014) no. 2 | DOI | MR | Zbl
[7] Rate of convergence to the remarkable state for fragmentation and growth-fragmentation equations, J. Math. Pures Appl., Volume 96 (2011) no. 4, pp. 334–362 | DOI | Zbl
[8] Nonparametric estimation of the division rate of a size-structured population, SIAM J. Numer. Anal., Volume 50 (2012) no. 2, pp. 925–950 | DOI | MR | Zbl
[9] Eigenelements of a general aggregation–fragmentation model, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 05, pp. 757–783 | DOI | MR | Zbl
[10] Numerical solution of an inverse problem in size-structured population dynamics, Inverse Probl., Volume 25 (February 2009) no. 4 | MR | Zbl
[11] On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99–125 | DOI | Numdam | MR | Zbl
[12] V.H. Hoang, Estimating the division kernel of a size-structured population, working paper or preprint, December 2015. | Numdam | MR
[13] V.H. Hoang, T.M.P. Ngoc, V. Rivoirard, V.C. Tran, Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation, Working paper or preprint, October 2017.
[14] Nonparametric estimation of the division rate of an age dependent branching process, December 2014 (arXiv preprint) | arXiv | MR
[15] On coalescence equations and related models, Modeling and Computational Methods for Kinetic Equations, Model. Simul. Sci. Eng. Technol, Birkhäuser Boston, Boston, MA, 2004, pp. 321–356 | DOI | MR | Zbl
[16] R. Lyons, Seventy years of Rajchman measures, 1993, dedicated to Jean-Pierre Kahane. | MR | Zbl
[17] Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., Volume 16 (2006) no. 7, suppl., pp. 1125–1153 | MR | Zbl
[18] General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235–1260 | DOI | MR | Zbl
[19] Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, Volume 33 (2016) no. 3, pp. 849–898 | Numdam | MR | Zbl
[20] Transform Analysis of Generalized Functions, North-Holland Mathematics Studies, Elsevier Science, 1986 | MR | Zbl
[21] On the inverse problem for a size-structured population model, Inverse Probl., Volume 23 (2007) no. 3, pp. 1037–1052 | DOI | MR | Zbl
[22] Wielandt's theorem about the Γ-function, Am. Math. Mon., Volume 103 (1996) no. 3, pp. 214–220 | MR | Zbl
[23] Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism, BMC Biol., Volume 12 (2014) no. 1, pp. 17
[24] Petit guide de calcul différentiel: à l'usage de la licence et de l'agrégation, Cassini, 2003
[25] On the coagulation-fragmentation equation, Z. Angew. Math. Phys., Volume 41 (1990) no. 6, pp. 917–924 | DOI | MR | Zbl
[26] An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior, Biophys. J., Volume 105 (2013), pp. 2811–2819
Cité par Sources :