We revise the classical approach by Brézis–Gallouët to prove global well-posedness for nonlinear evolution equations. In particular we prove global well-posedness for the quartic NLS on general domains Ω in with initial data in , and for the quartic nonlinear half-wave equation on with initial data in .
@article{AIHPC_2016__33_4_1069_0, author = {Ozawa, Tohru and Visciglia, Nicola}, title = {An improvement on the {Br\'ezis{\textendash}Gallou\"et} technique for {2D} {NLS} and {1D} half-wave equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1069--1079}, publisher = {Elsevier}, volume = {33}, number = {4}, year = {2016}, doi = {10.1016/j.anihpc.2015.03.004}, mrnumber = {3519532}, zbl = {1351.35188}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.004/} }
TY - JOUR AU - Ozawa, Tohru AU - Visciglia, Nicola TI - An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1069 EP - 1079 VL - 33 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.004/ DO - 10.1016/j.anihpc.2015.03.004 LA - en ID - AIHPC_2016__33_4_1069_0 ER -
%0 Journal Article %A Ozawa, Tohru %A Visciglia, Nicola %T An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1069-1079 %V 33 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.004/ %R 10.1016/j.anihpc.2015.03.004 %G en %F AIHPC_2016__33_4_1069_0
Ozawa, Tohru; Visciglia, Nicola. An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1069-1079. doi : 10.1016/j.anihpc.2015.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.004/
[1] Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains, Bull. Soc. Math. Fr., Volume 136 (2008), pp. 27–65 | Numdam | MR | Zbl
[2] Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems, Math. Ann., Volume 360 (2014), pp. 653–673 | DOI | MR | Zbl
[3] Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., Volume 354 (2012), pp. 1397–1430 | DOI | MR | Zbl
[4] Nonlinear Schrödinger evolution equations, Nonlinear Anal., Theory Methods Appl., Volume 4 (1980), pp. 677–681 | DOI | MR | Zbl
[5] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math., Volume 126 (2004), pp. 569–605 | DOI | MR | Zbl
[6] On nonlinear Schrödinger equations in exterior domains, Ann. Inst. Henri Poincaré (2004), pp. 295–318 | Numdam | MR | Zbl
[7] Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, Amer. Math. Soc., 2003 | MR | Zbl
[8] Mean field dynamics of boson stars, Commun. Pure Appl. Math., Volume 60 (2007), pp. 500–545 | DOI | MR | Zbl
[9] Uniqueness of non-linear ground states for fractional Laplacians in , Acta Math., Volume 210 (2013), pp. 261–318 | DOI | MR | Zbl
[10] Blowup for nonlinear wave equations describing boson stars, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1691–1705 | DOI | MR | Zbl
[11] The cubic Szegö equation, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010), pp. 761–810 | Numdam | MR | Zbl
[12] A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Commun. Math. Phys., Volume 282 (2008), pp. 435–467 | DOI | MR | Zbl
[13] On the Schrödinger equation outside strictly convex obstacles, Anal. Partial Differ. Equ., Volume 3 (2010), pp. 261–293 | MR | Zbl
[14] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527–620 | DOI | MR | Zbl
[15] On the continuum limit for discrete NLS with long-range interactions, Commun. Math. Phys., Volume 317 (2013), pp. 563–591 | DOI | MR | Zbl
[16] Nondispersive solutions to the -critical half-wave equation, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 61–129 | DOI | MR | Zbl
[17] A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., Volume 7 (1997), pp. 9–44 | DOI | MR | Zbl
[18] Explicit formula for the solution of the Szegö equation on the real line and applications, Discrete Contin. Dyn. Syst., Volume 31 (2011), pp. 607–649 | DOI | MR | Zbl
[19] On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989), pp. 1051–1056 | DOI | MR | Zbl
Cité par Sources :