Phase field approximation of cohesive fracture models
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1033-1067.

We obtain a cohesive fracture model as Γ-limit, as ε0, of scalar damage models in which the elastic coefficient is computed from the damage variable v through a function fε of the form fε(v)=min{1,ε12f(v)}, with f diverging for v close to the value describing undamaged material. The resulting fracture energy can be determined by solving a one-dimensional vectorial optimal profile problem. It is linear in the opening s at small values of s and has a finite limit as s. If in addition the function f is allowed to depend on the parameter ε, for specific choices we recover in the limit Dugdale's and Griffith's fracture models, and models with surface energy density having a power-law growth at small openings.

DOI : 10.1016/j.anihpc.2015.02.001
Classification : 49J45, 26B30, 74R10, 35A35
Mots clés : Cohesive fracture, Phase field models, Γ-convergence, Damage problems
@article{AIHPC_2016__33_4_1033_0,
     author = {Conti, S. and Focardi, M. and Iurlano, F.},
     title = {Phase field approximation of cohesive fracture models},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1033--1067},
     publisher = {Elsevier},
     volume = {33},
     number = {4},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.02.001},
     mrnumber = {3519531},
     zbl = {1345.49012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/}
}
TY  - JOUR
AU  - Conti, S.
AU  - Focardi, M.
AU  - Iurlano, F.
TI  - Phase field approximation of cohesive fracture models
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1033
EP  - 1067
VL  - 33
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/
DO  - 10.1016/j.anihpc.2015.02.001
LA  - en
ID  - AIHPC_2016__33_4_1033_0
ER  - 
%0 Journal Article
%A Conti, S.
%A Focardi, M.
%A Iurlano, F.
%T Phase field approximation of cohesive fracture models
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1033-1067
%V 33
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/
%R 10.1016/j.anihpc.2015.02.001
%G en
%F AIHPC_2016__33_4_1033_0
Conti, S.; Focardi, M.; Iurlano, F. Phase field approximation of cohesive fracture models. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1033-1067. doi : 10.1016/j.anihpc.2015.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/

[1] Alberti, G.; Bouchitté, G.; Seppecher, P. Phase transition with the line-tension effect, Arch. Ration. Mech. Anal., Volume 144 (1998), pp. 1–46 | DOI | MR | Zbl

[2] Alicandro, R.; Braides, A.; Shah, J. Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations, Interfaces Free Bound., Volume 1 (1999), pp. 17–37 | MR | Zbl

[3] Alicandro, R.; Focardi, M. Variational approximation of free-discontinuity energies with linear growth, Commun. Contemp. Math., Volume 4 (2002), pp. 685–723 | DOI | MR | Zbl

[4] Ambrosio, L. A compactness theorem for a new class of functions of bounded variation, Boll. Unione Mat. Ital., B (7), Volume 3 (1989), pp. 857–881 | MR | Zbl

[5] Ambrosio, L.; Faina, L.; March, R. Variational approximation of a second order free discontinuity problem in computer vision, SIAM J. Math. Anal., Volume 32 (2001), pp. 1171–1197 | DOI | MR | Zbl

[6] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, Oxf. Math. Monogr., The Clarendon Press, Oxford University Press, New York, 2000 | MR | Zbl

[7] Ambrosio, L.; Lemenant, A.; Royer-Carfagni, G. A variational model for plastic slip and its regularization via Γ-convergence, J. Elast., Volume 110 (2013), pp. 201–235 | DOI | MR | Zbl

[8] Ambrosio, L.; Tortorelli, V.M. Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Commun. Pure Appl. Math., Volume 43 (1990), pp. 999–1036 | DOI | MR | Zbl

[9] Ambrosio, L.; Tortorelli, V.M. On the approximation of free discontinuity problems, Boll. Unione Mat. Ital., B (7), Volume 6 (1992), pp. 105–123 | MR | Zbl

[10] Bar, L.; Sochen, N.; Kiryati, N. Image deblurring in the presence of impulsive noise, Int. J. Comput. Vis., Volume 70 (2006), pp. 279–298 | Zbl

[11] Barenblatt, G.I. The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., vol. 7, Academic Press, New York, 1962, pp. 55–129 | DOI | MR

[12] Bellettini, G.; Coscia, A. Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., Volume 15 (1994), pp. 201–224 | DOI | MR | Zbl

[13] Bouchitté, G.; Braides, A.; Buttazzo, G. Relaxation results for some free discontinuity problems, J. Reine Angew. Math., Volume 458 (1995), pp. 1–18 | MR | Zbl

[14] Bouchitté, G.; Fonseca, I.; Leoni, G.; Mascarenhas, L. A global method for relaxation in W1,p and in SBVp , Arch. Ration. Mech. Anal., Volume 165 (2002), pp. 187–242 | MR | Zbl

[15] Bourdin, B. Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., Volume 9 (2007), pp. 411–430 | MR | Zbl

[16] Bourdin, B.; Francfort, G.A.; Marigo, J.-J. Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000), pp. 797–826 | DOI | MR | Zbl

[17] Bourdin, B.; Francfort, G.A.; Marigo, J.-J. The variational approach to fracture, J. Elast., Volume 91 (2008), pp. 5–148 | DOI | MR | Zbl

[18] Braides, A. Γ-Convergence for Beginners, Oxford Lecture Ser. Math. Appl., vol. 22, Oxford University Press, Oxford, 2002 | MR | Zbl

[19] Braides, A.; Dal Maso, G.; Garroni, A. Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case, Arch. Ration. Mech. Anal., Volume 146 (1999), pp. 23–58 | DOI | MR | Zbl

[20] Braides, A.; Gelli, M.S. From discrete systems to continuous variational problems: an introduction, Topics on Concentration Phenomena and Problems with Multiple Scales, Lect. Notes Unione Mat. Ital., vol. 2, Springer, Berlin, 2006, pp. 3–77 | DOI | MR | Zbl

[21] Burke, S.; Ortner, C.; Süli, E. An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., Volume 48 (2010), pp. 980–1012 | DOI | MR | Zbl

[22] Burke, S.; Ortner, C.; Süli, E. An adaptive finite element approximation of a generalized Ambrosio–Tortorelli functional, Math. Models Methods Appl. Sci., Volume 23 (2013), pp. 1663–1697 | DOI | MR | Zbl

[23] Chambolle, A. An approximation result for special functions with bounded deformation, J. Math. Pures Appl. (9), Volume 83 (2004), pp. 929–954 | DOI | MR | Zbl

[24] Chambolle, A. Addendum to: “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. (9) 83 (7) (2004) 929–954], J. Math. Pures Appl. (9), Volume 84 (2005), pp. 137–145 | DOI | MR | Zbl

[25] Dal Maso, G. An Introduction to Γ-Convergence, Prog. Nonlinear Differ. Equ. Appl., vol. 8, Birkhäuser Boston Inc., Boston, MA, 1993 | MR | Zbl

[26] Dal Maso, G.; Iurlano, F. Fracture models as Γ-limits of damage models, Commun. Pure Appl. Anal., Volume 12 (2013), pp. 1657–1686 | MR | Zbl

[27] del Piero, G.; Truskinovsky, L. A one-dimensional model for localized and distributed failure, J. Phys. IV, Volume 8 (1998), pp. 95–102

[28] del Piero, G.; Truskinovsky, L. Macro- and micro-cracking in one-dimensional elasticity, Int. J. Solids Struct., Volume 38 (2001), pp. 1135–1148 | DOI | Zbl

[29] Dugdale, D. Yielding of steel sheets containing slits, J. Mech. Phys. Solids, Volume 8 (1960), pp. 100–108 | DOI

[30] Focardi, M. On the variational approximation of free-discontinuity problems in the vectorial case, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 663–684 | DOI | MR | Zbl

[31] Focardi, M. Variational approximation of vectorial free discontinuity problems: the discrete and continuous case, Scuola Normale Superiore, Pisa, 2002 (PhD thesis)

[32] Focardi, M.; Iurlano, F. Asymptotic analysis of Ambrosio–Tortorelli energies in linearized elasticity, SIAM J. Math. Anal., Volume 46 (2014), pp. 2936–2955 | DOI | MR | Zbl

[33] Fokoua, L.; Conti, S.; Ortiz, M. Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity, J. Mech. Phys. Solids, Volume 62 (2014), pp. 295–311 | DOI | MR | Zbl

[34] Francfort, G.A.; Marigo, J.-J. Stable damage evolution in a brittle continuous medium, Eur. J. Mech. A, Solids, Volume 12 (1993), pp. 149–189 | MR | Zbl

[35] Francfort, G.A.; Marigo, J.-J. Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, Volume 46 (1998), pp. 1319–1342 | DOI | MR | Zbl

[36] Fusco, N. An overview of the Mumford–Shah problem, Milan J. Math., Volume 71 (2003), pp. 95–119 | DOI | MR | Zbl

[37] Henao, D.; Mora-Corral, C.; Xu, X. Γ-convergence approximation of fracture and cavitation in nonlinear elasticity, Arch. Ration. Mech. Anal. (2014), pp. 1–67 | DOI | MR

[38] Iurlano, F. Fracture and plastic models as Γ-limits of damage models under different regimes, Adv. Calc. Var., Volume 6 (2013), pp. 165–189 | DOI | MR | Zbl

[39] Iurlano, F. A density result for GSBD and its application to the approximation of brittle fracture energies, Calc. Var. Partial Differ. Equ., Volume 51 (2014), pp. 315–342 | DOI | MR | Zbl

[40] Pham, K.; Marigo, J.-J. Approche variationnelle de l'endommagement: I. Les concepts fondamentaux, C. R., Méc., Volume 338 (2010), pp. 191–198 | Zbl

[41] Pham, K.; Marigo, J.-J. Approche variationnelle de l'endommagement: II. Les modèles à gradient, C. R., Méc., Volume 338 (2010), pp. 199–206 | Zbl

[42] Shah, J. Curve evolution and segmentation functionals: application to color images, Proceedings IEEE ICIP, 1996 | DOI

Cité par Sources :