We obtain a cohesive fracture model as Γ-limit, as , of scalar damage models in which the elastic coefficient is computed from the damage variable v through a function of the form , with f diverging for v close to the value describing undamaged material. The resulting fracture energy can be determined by solving a one-dimensional vectorial optimal profile problem. It is linear in the opening s at small values of s and has a finite limit as . If in addition the function f is allowed to depend on the parameter ε, for specific choices we recover in the limit Dugdale's and Griffith's fracture models, and models with surface energy density having a power-law growth at small openings.
Mots-clés : Cohesive fracture, Phase field models, Γ-convergence, Damage problems
@article{AIHPC_2016__33_4_1033_0, author = {Conti, S. and Focardi, M. and Iurlano, F.}, title = {Phase field approximation of cohesive fracture models}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1033--1067}, publisher = {Elsevier}, volume = {33}, number = {4}, year = {2016}, doi = {10.1016/j.anihpc.2015.02.001}, mrnumber = {3519531}, zbl = {1345.49012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/} }
TY - JOUR AU - Conti, S. AU - Focardi, M. AU - Iurlano, F. TI - Phase field approximation of cohesive fracture models JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1033 EP - 1067 VL - 33 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/ DO - 10.1016/j.anihpc.2015.02.001 LA - en ID - AIHPC_2016__33_4_1033_0 ER -
%0 Journal Article %A Conti, S. %A Focardi, M. %A Iurlano, F. %T Phase field approximation of cohesive fracture models %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1033-1067 %V 33 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/ %R 10.1016/j.anihpc.2015.02.001 %G en %F AIHPC_2016__33_4_1033_0
Conti, S.; Focardi, M.; Iurlano, F. Phase field approximation of cohesive fracture models. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1033-1067. doi : 10.1016/j.anihpc.2015.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2015.02.001/
[1] Phase transition with the line-tension effect, Arch. Ration. Mech. Anal., Volume 144 (1998), pp. 1–46 | DOI | MR | Zbl
[2] Free-discontinuity problems via functionals involving the -norm of the gradient and their approximations, Interfaces Free Bound., Volume 1 (1999), pp. 17–37 | MR | Zbl
[3] Variational approximation of free-discontinuity energies with linear growth, Commun. Contemp. Math., Volume 4 (2002), pp. 685–723 | DOI | MR | Zbl
[4] A compactness theorem for a new class of functions of bounded variation, Boll. Unione Mat. Ital., B (7), Volume 3 (1989), pp. 857–881 | MR | Zbl
[5] Variational approximation of a second order free discontinuity problem in computer vision, SIAM J. Math. Anal., Volume 32 (2001), pp. 1171–1197 | DOI | MR | Zbl
[6] Functions of Bounded Variation and Free Discontinuity Problems, Oxf. Math. Monogr., The Clarendon Press, Oxford University Press, New York, 2000 | MR | Zbl
[7] A variational model for plastic slip and its regularization via Γ-convergence, J. Elast., Volume 110 (2013), pp. 201–235 | DOI | MR | Zbl
[8] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Commun. Pure Appl. Math., Volume 43 (1990), pp. 999–1036 | DOI | MR | Zbl
[9] On the approximation of free discontinuity problems, Boll. Unione Mat. Ital., B (7), Volume 6 (1992), pp. 105–123 | MR | Zbl
[10] Image deblurring in the presence of impulsive noise, Int. J. Comput. Vis., Volume 70 (2006), pp. 279–298 | Zbl
[11] The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., vol. 7, Academic Press, New York, 1962, pp. 55–129 | DOI | MR
[12] Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., Volume 15 (1994), pp. 201–224 | DOI | MR | Zbl
[13] Relaxation results for some free discontinuity problems, J. Reine Angew. Math., Volume 458 (1995), pp. 1–18 | MR | Zbl
[14] A global method for relaxation in and in , Arch. Ration. Mech. Anal., Volume 165 (2002), pp. 187–242 | MR | Zbl
[15] Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., Volume 9 (2007), pp. 411–430 | MR | Zbl
[16] Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000), pp. 797–826 | DOI | MR | Zbl
[17] The variational approach to fracture, J. Elast., Volume 91 (2008), pp. 5–148 | DOI | MR | Zbl
[18] Γ-Convergence for Beginners, Oxford Lecture Ser. Math. Appl., vol. 22, Oxford University Press, Oxford, 2002 | MR | Zbl
[19] Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case, Arch. Ration. Mech. Anal., Volume 146 (1999), pp. 23–58 | DOI | MR | Zbl
[20] From discrete systems to continuous variational problems: an introduction, Topics on Concentration Phenomena and Problems with Multiple Scales, Lect. Notes Unione Mat. Ital., vol. 2, Springer, Berlin, 2006, pp. 3–77 | DOI | MR | Zbl
[21] An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., Volume 48 (2010), pp. 980–1012 | DOI | MR | Zbl
[22] An adaptive finite element approximation of a generalized Ambrosio–Tortorelli functional, Math. Models Methods Appl. Sci., Volume 23 (2013), pp. 1663–1697 | DOI | MR | Zbl
[23] An approximation result for special functions with bounded deformation, J. Math. Pures Appl. (9), Volume 83 (2004), pp. 929–954 | DOI | MR | Zbl
[24] Addendum to: “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. (9) 83 (7) (2004) 929–954], J. Math. Pures Appl. (9), Volume 84 (2005), pp. 137–145 | DOI | MR | Zbl
[25] An Introduction to Γ-Convergence, Prog. Nonlinear Differ. Equ. Appl., vol. 8, Birkhäuser Boston Inc., Boston, MA, 1993 | MR | Zbl
[26] Fracture models as Γ-limits of damage models, Commun. Pure Appl. Anal., Volume 12 (2013), pp. 1657–1686 | MR | Zbl
[27] A one-dimensional model for localized and distributed failure, J. Phys. IV, Volume 8 (1998), pp. 95–102
[28] Macro- and micro-cracking in one-dimensional elasticity, Int. J. Solids Struct., Volume 38 (2001), pp. 1135–1148 | DOI | Zbl
[29] Yielding of steel sheets containing slits, J. Mech. Phys. Solids, Volume 8 (1960), pp. 100–108 | DOI
[30] On the variational approximation of free-discontinuity problems in the vectorial case, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 663–684 | DOI | MR | Zbl
[31] Variational approximation of vectorial free discontinuity problems: the discrete and continuous case, Scuola Normale Superiore, Pisa, 2002 (PhD thesis)
[32] Asymptotic analysis of Ambrosio–Tortorelli energies in linearized elasticity, SIAM J. Math. Anal., Volume 46 (2014), pp. 2936–2955 | DOI | MR | Zbl
[33] Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity, J. Mech. Phys. Solids, Volume 62 (2014), pp. 295–311 | DOI | MR | Zbl
[34] Stable damage evolution in a brittle continuous medium, Eur. J. Mech. A, Solids, Volume 12 (1993), pp. 149–189 | MR | Zbl
[35] Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, Volume 46 (1998), pp. 1319–1342 | DOI | MR | Zbl
[36] An overview of the Mumford–Shah problem, Milan J. Math., Volume 71 (2003), pp. 95–119 | DOI | MR | Zbl
[37] Γ-convergence approximation of fracture and cavitation in nonlinear elasticity, Arch. Ration. Mech. Anal. (2014), pp. 1–67 | DOI | MR
[38] Fracture and plastic models as Γ-limits of damage models under different regimes, Adv. Calc. Var., Volume 6 (2013), pp. 165–189 | DOI | MR | Zbl
[39] A density result for GSBD and its application to the approximation of brittle fracture energies, Calc. Var. Partial Differ. Equ., Volume 51 (2014), pp. 315–342 | DOI | MR | Zbl
[40] Approche variationnelle de l'endommagement: I. Les concepts fondamentaux, C. R., Méc., Volume 338 (2010), pp. 191–198 | Zbl
[41] Approche variationnelle de l'endommagement: II. Les modèles à gradient, C. R., Méc., Volume 338 (2010), pp. 199–206 | Zbl
[42] Curve evolution and segmentation functionals: application to color images, Proceedings IEEE ICIP, 1996 | DOI
Cité par Sources :