Constant Q-curvature metrics near the hyperbolic metric
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 591-614.

Let (M,g) be a Poincaré–Einstein manifold with a smooth defining function. In this note, we prove that there are infinitely many asymptotically hyperbolic metrics with constant Q-curvature in the conformal class of an asymptotically hyperbolic metric close enough to g. These metrics are parametrized by the elements in the kernel of the linearized operator of the prescribed constant Q-curvature equation. A similar analysis is applied to a class of fourth order equations arising in spectral theory.

@article{AIHPC_2014__31_3_591_0,
     author = {Li, Gang},
     title = {Constant {\protect\emph{Q}-curvature} metrics near the hyperbolic metric},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {591--614},
     publisher = {Elsevier},
     volume = {31},
     number = {3},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.04.008},
     mrnumber = {3208456},
     zbl = {1302.58012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.008/}
}
TY  - JOUR
AU  - Li, Gang
TI  - Constant Q-curvature metrics near the hyperbolic metric
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 591
EP  - 614
VL  - 31
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.008/
DO  - 10.1016/j.anihpc.2013.04.008
LA  - en
ID  - AIHPC_2014__31_3_591_0
ER  - 
%0 Journal Article
%A Li, Gang
%T Constant Q-curvature metrics near the hyperbolic metric
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 591-614
%V 31
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.008/
%R 10.1016/j.anihpc.2013.04.008
%G en
%F AIHPC_2014__31_3_591_0
Li, Gang. Constant Q-curvature metrics near the hyperbolic metric. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 591-614. doi : 10.1016/j.anihpc.2013.04.008. http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.008/

[1] L. Andersson, Piotr T. Chruściel, H. Friedrich, On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations, Comm. Math. Phys. 149 no. 3 (1992), 587 -612 | MR | Zbl

[2] S. Brendle, Global existence and convergence for a higher order flow in conformal geometry, Ann. of Math. 158 (2003), 323 -343 | MR | Zbl

[3] A. Chang, P. Yang, Extremal metrics of zeta functional determinants on 4-manifolds, Ann. of Math. 142 (1995), 171 -212 | MR | Zbl

[4] X. Chen, X. Xu, Q-curvature flow on the standard sphere of even dimension, J. Funct. Anal. 261 (2011), 934 -980 | MR | Zbl

[5] P.T. Chruściel, E. Delay, J.M. Lee, D.N. Skinner, Boundary regularity of conformally compact Einstein metrics, J. Differential Geom. 69 no. 1 (2005), 111 -136 | MR | Zbl

[6] Z. Djadli, E. Hebey, M. Ledoux, Paneitz-type operators and applications, Duke Math. J. 104 no. 1 (2000), 129 -169 | MR | Zbl

[7] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. 168 (2008), 813 -858 | MR | Zbl

[8] R. Graham, Volume and area renormalizations for conformally compact Einstein metrics, arXiv:math/9909042v1 (1999) | MR

[9] R. Graham, J.M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 no. 2 (1991), 186 -225 | MR | Zbl

[10] R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 no. 1 (2003), 89 -118 | MR | Zbl

[11] H. Grunau, M. Ould Ahmedou, M. Reichel, The Paneitz equation in hyperbolic space, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2007), 847 -864 | EuDML | Numdam | MR | Zbl

[12] M. Gursky, Weyl functional, de Rham cohomology, and Kahler–Einstein metrics, Ann. of Math. 148 (1998), 315 -337 | MR | Zbl

[13] M. Gursky, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm. Math. Phys. 207 (1999), 131 -143 | MR | Zbl

[14] A. Juhl, Families of Conformally Covariant Differential Operators, Q-Curvature and Holography, Progr. Math. vol. 275 , Birkhäuser-Verlag, Basel (2009) | MR | Zbl

[15] N.N. Lebedev, Special Functions and Their Applications, Dover, New York (1972) | MR | Zbl

[16] J.M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183 no. 864 (2006), vi+83 pp | MR | Zbl

[17] C. Lin, A classification of solutions of a conformally invariant fourth order equation in n , Comment. Math. Helv. 73 (1998), 206 -231 | MR | Zbl

[18] R. Mazzeo, Elliptic theory of differential edge operators I, Comm. Partial Differential Equations 16 no. 10 (1991), 1615 -1664 | MR | Zbl

[19] R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), 309 -339 | MR | Zbl

[20] R. Mazzeo, Regularity for the singular Yamabe problem, Indiana Univ. Math. J. 40 no. 4 (1991), 1277 -1299 | MR | Zbl

[21] R. Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 113 (1991), 25 -45 | MR | Zbl

[22] R. Mazzeo, F. Pacard, Poincaré–Einstein metrics and the Schouten tensor, Pacific J. Math. 212 no. 1 (2003), 169 -185 | MR | Zbl

[23] C. Ndiaye, Constant Q-curvature metrics in arbitrary dimension, J. Funct. Anal. 251 (2007), 1 -58 | MR | Zbl

[24] C. Ndiaye, Conformal metrics with constant Q-curvature for manifolds with boundary, Comm. Anal. Geom. 16 no. 5 (2008), 1049 -1124 | MR | Zbl

[25] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge (1922) | MR | Zbl

[26] J. Wei, D. Ye, Nonradial solutions for a conformally invariant fourth order equation in 4 , Calc. Var. Partial Differential Equations 32 no. 2 (2008), 373 -386 | MR | Zbl

[27] X. Xu, P. Yang, Positivity of Paneitz operators, Discrete Contin. Dyn. Syst. 7 no. 2 (2001), 329 -342 | MR | Zbl

Cité par Sources :