@article{AIHPC_2008__25_5_847_0, author = {Grunau, Hans-Christoph and Ould Ahmedou, Mohameden and Reichel, Wolfgang}, title = {The {Paneitz} equation in hyperbolic space}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {847--864}, publisher = {Elsevier}, volume = {25}, number = {5}, year = {2008}, doi = {10.1016/j.anihpc.2007.05.001}, mrnumber = {2457814}, zbl = {1145.53309}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.001/} }
TY - JOUR AU - Grunau, Hans-Christoph AU - Ould Ahmedou, Mohameden AU - Reichel, Wolfgang TI - The Paneitz equation in hyperbolic space JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 847 EP - 864 VL - 25 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.001/ DO - 10.1016/j.anihpc.2007.05.001 LA - en ID - AIHPC_2008__25_5_847_0 ER -
%0 Journal Article %A Grunau, Hans-Christoph %A Ould Ahmedou, Mohameden %A Reichel, Wolfgang %T The Paneitz equation in hyperbolic space %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 847-864 %V 25 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.001/ %R 10.1016/j.anihpc.2007.05.001 %G en %F AIHPC_2008__25_5_847_0
Grunau, Hans-Christoph; Ould Ahmedou, Mohameden; Reichel, Wolfgang. The Paneitz equation in hyperbolic space. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 5, pp. 847-864. doi : 10.1016/j.anihpc.2007.05.001. http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.001/
[1] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math. 42 (1989) 271-297. | MR | Zbl
, , ,[2] On a fourth-order partial differential equation in conformal geometry, in: , (Eds.), Harmonic Analysis and Partial Differential Equations. Essays in honor of Alberto P. Calderón's 75th birthday, Proceedings of a Conference, University of Chicago, February 1996, Chicago Lectures in Mathematics, The University of Chicago Press, 1999, pp. 127-150. | MR | Zbl
,[3] Non-Linear Elliptic Equations in Conformal Geometry, Zurich Lectures in Advanced Mathematics, European Math. Soc. (EMS), Zürich, 2004. | MR | Zbl
,[4] A note on a class of higher order conformally covariant equations, Discrete Contin. Dyn. Syst. 7 (2001) 275-281. | MR | Zbl
, ,[5] Extremal metrics of zeta function determinants on 4-manifolds, Ann. Math. 142 (1995) 171-212. | MR | Zbl
, ,[6] On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett. 4 (1997) 91-102. | MR | Zbl
, ,[7] On a fourth order curvature invariant, in: (Ed.), Spectral Problems in Geometry and Arithmetic, NSF-CBMS Conference on Spectral Problems in Geometry and Arithmetic, Iowa City, August 18-22, 1997, Contemp. Math., vol. 237, American Mathematical Society, Providence, RI, 1999, pp. 9-28. | MR | Zbl
, ,[8] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-622. | MR | Zbl
, ,[9] Y.S. Choi, X. Xu, Nonlinear biharmonic equations with negative exponents, preprint, 1999. | MR
[10] Large radial solutions of a polyharmonic equation with superlinear growth, Electronic J. Differential Equations, Conference 16 (2007) 103-128. | EuDML | MR | Zbl
, , ,[11] J.I. Diaz, M. Lazzo, P.G. Schmidt, Asymptotic behavior of large radial solutions of a polyharmonic equation with superlinear growth, in preparation.
[12] Paneitz-type operators and applications, Duke Math. J. 104 (2000) 129-169. | MR | Zbl
, , ,[13] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. Math., in press. | Zbl
[14] Prescribing a fourth order conformal invariant on the standard sphere. I: A perturbation result, Commun. Contemp. Math. 4 (2002) 375-408. | MR | Zbl
, , ,[15] Prescribing a fourth order conformal invariant on the standard sphere. II: Blow up analysis and applications, Ann. Sc. Norm. Super Pisa, Cl. Sci. (5) 1 (2002) 387-434. | EuDML | Numdam | MR | Zbl
, , ,[16] Existence of conformal metrics on with prescribed fourth-order invariant, Adv. Differential Equations 7 (2002) 47-76. | MR | Zbl
,[17] The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity, J. Differential Equations 234 (2007) 582-606. | MR | Zbl
, ,[18] Radial entire solutions for supercritical biharmonic equations, Math. Ann. 334 (2006) 905-936. | MR | Zbl
, ,[19] The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Commun. Math. Phys. 207 (1999) 131-143. | MR | Zbl
,[20] Ordinary Differential Equation, John Wiley and Sons, New York, 1964. | MR | Zbl
,[21] A classification of solutions of a conformally invariant fourth order equation in , Comment. Math. Helv. 73 (1998) 206-231. | MR | Zbl
,[22] Partial differential equations invariant under conformal or projective transformations, in: (Ed.), Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272. | MR | Zbl
, ,[23] The Poincaré-Bendixson theorem for monotone cyclic feedback systems, J. Dynamics Differential Equations 2 (1990) 367-421. | MR | Zbl
, ,[24] Poincaré-Einstein metrics and the Schouten tensor, Pacific J. Math. 212 (2003) 169-185. | MR | Zbl
, ,[25] Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electronic J. Differential Equations 2003 (37) (2003) 1-13. | EuDML | MR | Zbl
, ,[26] Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333-340. | MR | Zbl
,[27] Eigenfunctions of the equation , Soviet Math. Dokl. 6 (1965) 1408-1411, English translation from, Dokl. Akad. Nauk SSSR 165 (1965) 36-39. | MR | Zbl
,[28] A general variational identity, Indiana Univ. Math. J. 35 (1986) 681-703. | MR | Zbl
, ,[29] Positive solutions for a fourth order equation invariant under isometries, Proc. Amer. Math. Soc. 131 (2003) 1423-1431. | MR | Zbl
,[30] On conformal deformations of metrics on , J. Funct. Anal. 157 (1998) 292-325. | MR | Zbl
, ,[31] Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999) 207-228. | MR | Zbl
, ,Cité par Sources :