We study a system of nonlinear Schrödinger equations with quadratic interaction in space dimension . The Cauchy problem is studied in , in , and in the weighted space under mass resonance condition, where and is the Fourier transform. The existence of ground states is studied by variational methods. Blow-up solutions are presented in an explicit form in terms of ground states under mass resonance condition, which ensures the invariance of the system under pseudo-conformal transformations.
@article{AIHPC_2013__30_4_661_0, author = {Hayashi, Nakao and Ozawa, Tohru and Tanaka, Kazunaga}, title = {On a system of nonlinear {Schr\"odinger} equations with quadratic interaction}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {661--690}, publisher = {Elsevier}, volume = {30}, number = {4}, year = {2013}, doi = {10.1016/j.anihpc.2012.10.007}, mrnumber = {3082479}, zbl = {1291.35347}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.007/} }
TY - JOUR AU - Hayashi, Nakao AU - Ozawa, Tohru AU - Tanaka, Kazunaga TI - On a system of nonlinear Schrödinger equations with quadratic interaction JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 661 EP - 690 VL - 30 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.007/ DO - 10.1016/j.anihpc.2012.10.007 LA - en ID - AIHPC_2013__30_4_661_0 ER -
%0 Journal Article %A Hayashi, Nakao %A Ozawa, Tohru %A Tanaka, Kazunaga %T On a system of nonlinear Schrödinger equations with quadratic interaction %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 661-690 %V 30 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.007/ %R 10.1016/j.anihpc.2012.10.007 %G en %F AIHPC_2013__30_4_661_0
Hayashi, Nakao; Ozawa, Tohru; Tanaka, Kazunaga. On a system of nonlinear Schrödinger equations with quadratic interaction. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 4, pp. 661-690. doi : 10.1016/j.anihpc.2012.10.007. http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.007/
[1] Problème de Cauchy global pour des systèmes de Dirac–Klein–Gordon, Ann. Inst. H. Poincaré 48 (1988), 387-422 | EuDML | Numdam | MR | Zbl
,[2] Semilinear Schrödinger Equations, Courant Lect. Notes Math. vol. 10, Amer. Math. Soc. (2003) | MR | Zbl
,[3] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. 14 (1990), 807-836 | MR | Zbl
, ,[4] On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations 17 (2004), 297-330 | MR | Zbl
, ,[5] Stability of solitary waves for a system of nonlinear solutions Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 2211-2226 | EuDML | Numdam | MR | Zbl
, , ,[6] Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 no. 3 (1979), 443-474 | MR | Zbl
,[7] Global solution of the system of wave and Klein–Gordon equations, Math. Z. 203 (1990), 683-698 | EuDML | MR | Zbl
,[8] On a class of nonlinear Schrödinger equations, I. The Cauchy problem, II. Scattering theory, J. Funct. Anal. 32 (1979), 1-71 | MR | Zbl
, ,[9] Wave operator for the system of the Dirac–Klein–Gordon equations, Math. Methods Appl. Sci. 34 (2011), 896-910 | MR | Zbl
, , ,[10] On a system of nonlinear Schrödinger equations in 2d, Differential Integral Equations 24 (2011), 417-434 | MR | Zbl
, , ,[11] Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl. 3 (2011), 415-426 | MR | Zbl
, , ,[12] A note on the null condition for quadratic nonlinear Klein–Gordon systems in two space dimensions, Comm. Pure Appl. Math. LXV (2012), 1285-1302 | MR | Zbl
, , ,[13] On nonlinear Schrödinger equations II, -solutions and nonconditional well-posedness, J. Anal. Math. 67 (1995), 281-306 | MR | Zbl
,[14] Orbital stability of semitrivial standing waves for the Klein–Gordon–Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 315-323 | Numdam | MR | Zbl
,[15] Stability of standing waves for the Klein–Gordon–Schrödinger system, J. Math. Anal. Appl. 365 (2010), 109-114 | MR | Zbl
, ,[16] Analysis, Amer. Math. Soc. (2001) | MR
, ,[17] Nonrelativistic limit in the energy space for nonlinear Klein–Gordon equations, Math. Ann. 332 (2002), 603-621 | MR | Zbl
, , ,[18] Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana 19 (2003), 179-194 | EuDML | MR | Zbl
, , ,[19] Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Rev. Math. Phys. 9 (1997), 397-410 | MR | Zbl
, ,[20] Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 25 (2006), 403-408 | MR | Zbl
,[21] Some results on connecting orbits for a class of Hamiltonian systems, Math. Z. 206 (1991), 473-499 | EuDML | MR | Zbl
, ,[22] Nonlinear Wave Equations, CBMS Reg. Conf. Ser. Math. vol. 73, Amer. Math. Soc. (1989) | MR
,[23] The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer (1999) | MR | Zbl
, ,[24] On global small amplitude solutions to systems of cubic nonlinear Klein–Gordon equations with different mass in one space dimension, J. Differential Equations 192 (2003), 308-325 | MR | Zbl
,[25] Stability of constant equilibrium for the Maxwell–Higgs equations, Funkcial. Ekvac. 46 (2003), 41-62 | MR | Zbl
,[26] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982), 567-576 | MR | Zbl
,[27] On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations 11 (1986), 545-565 | MR | Zbl
,Cité par Sources :