In the present paper, we study the orbital stability and instability of standing waves of the Klein–Gordon–Schrödinger system. Especially, we are interested in a standing wave which is expressed by the unique positive solution to a certain scalar field equation. By utilizing the property of the positive solution , we can apply the general theory of Grillakis, Shatah and Strauss (1987) [11] and show the stability and instability of the standing wave.
@article{AIHPC_2011__28_2_315_0, author = {Kikuchi, Hiroaki}, title = {Orbital stability of semitrivial standing waves for the {Klein{\textendash}Gordon{\textendash}Schr\"odinger} system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {315--323}, publisher = {Elsevier}, volume = {28}, number = {2}, year = {2011}, doi = {10.1016/j.anihpc.2011.02.003}, mrnumber = {2784074}, zbl = {1216.35116}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.003/} }
TY - JOUR AU - Kikuchi, Hiroaki TI - Orbital stability of semitrivial standing waves for the Klein–Gordon–Schrödinger system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 315 EP - 323 VL - 28 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.003/ DO - 10.1016/j.anihpc.2011.02.003 LA - en ID - AIHPC_2011__28_2_315_0 ER -
%0 Journal Article %A Kikuchi, Hiroaki %T Orbital stability of semitrivial standing waves for the Klein–Gordon–Schrödinger system %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 315-323 %V 28 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.003/ %R 10.1016/j.anihpc.2011.02.003 %G en %F AIHPC_2011__28_2_315_0
Kikuchi, Hiroaki. Orbital stability of semitrivial standing waves for the Klein–Gordon–Schrödinger system. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 2, pp. 315-323. doi : 10.1016/j.anihpc.2011.02.003. http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.003/
[1] Periodic pulses of coupled nonlinear Schrödinger equations in optics, Indiana Univ. Math. J. 56 (2007), 847-877 | MR | Zbl
, ,[2] Problème de Cauchy pour des systèmes hyperboliques semi-linéaires, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 453-478 | EuDML | Numdam | MR | Zbl
,[3] The Cauchy problem for the coupled Klein–Gordon–Schrödinger equations, Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam (1978), 37-44 | MR | Zbl
, ,[4] Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon nonlinéaires, C. R. Acad. Sci. Paris 293 (1981), 489-492 | MR | Zbl
, ,[5] Nonlinear scalar field equation I, Arch. Rat. Mech. Anal. 82 (1983), 313-346 | MR
, ,[6] Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561 | MR | Zbl
, ,[7] On coupled Klein–Gordon–Schrödinger equations II, J. Math. Anal. Appl. 66 (1978), 358-378 | MR | Zbl
, ,[8] Symmetry of positive solutions of nonlinear elliptic equations in , Adv. Math. Suppl. Stud. vol. 7A, Academic Press (1981), 369-402 | MR
, , ,[9] Elliptic Partial Differential Equations of Second Order, Springer (1983) | MR | Zbl
, ,[10] Linearized instability for nonlinear Schrödinger and Klein–Gordon equations, Comm. Pure Appl. Math. 41 (1988), 747-774 | MR | Zbl
,[11] Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 74 (1987), 160-197 | MR | Zbl
, , ,[12] Bounds in time for the Klein–Gordon–Schrödinger and the Zakharov systems, Hokkaido Math. J. 35 (2006), 139-153 | MR | Zbl
, ,[13] On the global strong solutions of coupled Klein–Gordon–Schrödinger equations, J. Math. Soc. Japan 39 (1987), 489-497 | MR | Zbl
, ,[14] Instability of standing waves for the Klein–Gordon–Schrödinger system, Hokkaido Math. J. 37 (2008), 735-748 | MR | Zbl
, ,[15] Stability of standing waves for the Klein–Gordon–Schrödinger system, J. Math. Anal. Appl. 365 (2010), 109-114 | MR | Zbl
, ,[16] Uniqueness of positive solutions of in , Arch. Rat. Mech. Anal. 105 (1989), 243-266 | MR | Zbl
,[17] Locating the peaks of least-energy solution to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281 | MR | Zbl
, ,[18] Global solutions of the Klein–Gordon–Schrödinger system with rough data, Differential Integral Equations 17 (2004), 179-214 | MR | Zbl
,[19] Stable standing waves of nonlinear Klein–Gordon equations, Comm. Math. Phys. 91 (1983), 313-327 | MR | Zbl
,[20] Instability of nonlinear bound states, Comm. Math. Phys. 100 (1985), 173-190 | MR | Zbl
, ,[21] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/1983), 567-576 | MR | Zbl
,[22] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Appl. Math. 16 (1985), 472-490 | MR | Zbl
,[23] Stability analysis of multipulses in nonlinearly-coupled Schödinger equations, Indiana Univ. Math. J. 49 (2000), 1079-1124 | MR | Zbl
,Cité par Sources :