Minimizers of the Willmore functional with a small area constraint
Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 3, pp. 497-518.

We show the existence of a smooth spherical surface minimizing the Willmore functional subject to an area constraint in a compact Riemannian three-manifold, provided the area is small enough. Moreover, we partially classify complete surfaces of Willmore type with positive mean curvature in Riemannian three-manifolds.

DOI : 10.1016/j.anihpc.2012.10.003
Mots-clés : Willmore functional, Minimizers, Direct method
@article{AIHPC_2013__30_3_497_0,
     author = {Lamm, Tobias and Metzger, Jan},
     title = {Minimizers of the {Willmore} functional with a small area constraint},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {497--518},
     publisher = {Elsevier},
     volume = {30},
     number = {3},
     year = {2013},
     doi = {10.1016/j.anihpc.2012.10.003},
     zbl = {1290.49090},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.003/}
}
TY  - JOUR
AU  - Lamm, Tobias
AU  - Metzger, Jan
TI  - Minimizers of the Willmore functional with a small area constraint
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2013
SP  - 497
EP  - 518
VL  - 30
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.003/
DO  - 10.1016/j.anihpc.2012.10.003
LA  - en
ID  - AIHPC_2013__30_3_497_0
ER  - 
%0 Journal Article
%A Lamm, Tobias
%A Metzger, Jan
%T Minimizers of the Willmore functional with a small area constraint
%J Annales de l'I.H.P. Analyse non linéaire
%D 2013
%P 497-518
%V 30
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.003/
%R 10.1016/j.anihpc.2012.10.003
%G en
%F AIHPC_2013__30_3_497_0
Lamm, Tobias; Metzger, Jan. Minimizers of the Willmore functional with a small area constraint. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 3, pp. 497-518. doi : 10.1016/j.anihpc.2012.10.003. http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.003/

[1] M. Bauer, E. Kuwert, Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Not. 10 (2003), 553-576 | Zbl

[2] J. Chen, Y. Li, Bubble tree of a class of conformal mappings and applications to the Willmore functional, preprint, 2011.

[3] C. De Lellis, S. Müller, Optimal rigidity estimates for nearly umbilical surfaces, J. Differential Geom. 69 (2005), 75-110 | MR | Zbl

[4] C. De Lellis, S. Müller, A C 0 estimate for nearly umbilical surfaces, Calc. Var. Partial Differential Equations 26 (2006), 283-296 | MR | Zbl

[5] D. Fischer-Colbrie, R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199-211 | MR | Zbl

[6] E. Kuwert, Y. Li, W 2,2 -conformal immersions of a closed Riemann surface into n , Comm. Anal. Geom. 20 (2012), 313-340 | MR | Zbl

[7] E. Kuwert, A. Mondino, J. Schygulla, Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds, preprint, 2011. | MR

[8] E. Kuwert, R. Schätzle, Minimizers of the Willmore functional under fixed conformal class, J. Differential Geom., in press. | MR

[9] T. Lamm, J. Metzger, Small surfaces of Willmore type in Riemannian manifolds, Int. Math. Res. Not. 19 (2010), 3786-3813 | MR | Zbl

[10] T. Lamm, J. Metzger, F. Schulze, Foliations of asymptotically flat manifolds by surfaces of Willmore type, Math. Ann. 350 (2011), 1-78 | MR | Zbl

[11] A. Mondino, Some results about the existence of critical points for the Willmore functional, Math. Z. 266 (2010), 583-622 | MR | Zbl

[12] A. Mondino, The conformal Willmore functional: a perturbative approach, J. Geom. Anal., http://dx.doi.org/10.1007/s12220-011-9263-3, in press. | MR

[13] A. Mondino, T. Rivière, Willmore spheres in compact Riemannian manifolds, preprint, 2012. | MR

[14] T. Rivière, Variational principles for immersed surfaces with L 2 -bounded second fundamental form, preprint, 2010. | MR

[15] J. Schygulla, Willmore minimizers with prescribed isoperimetric ratio, Arch. Ration. Mech. Anal. 203 (2012), 901-941 | MR | Zbl

[16] L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993), 281-326 | MR | Zbl

[17] M. Struwe, Variational Methods, Ergeb. Math. Grenzgeb. vol. 34, Springer Verlag, Berlin (2008) | MR

Cité par Sources :