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Abstract

We show the existence of a smooth spherical surface minimizing the Willmore functional subject to an area constraint in a
compact Riemannian three-manifold, provided the area is small enough. Moreover, we partially classify complete surfaces of
Willmore type with positive mean curvature in Riemannian three-manifolds.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

For a three-dimensional complete Riemannian manifold (M,g) and an immersion f : Σ → M the Willmore func-
tional is defined by

W(f ) = 1

2

∫
Σ

H 2 dμ,

where H is the induced mean curvature and μ the induced area measure. In the following we let A resp. Å be the
second fundamental form resp. the trace-free second fundamental form of the immersion f . Critical points of W are
called Willmore surfaces and they are solutions of the Euler–Lagrange equation

�H + H |Å|2 + H Ric(ν, ν) = 0,

where Ric denotes the Ricci curvature of (M,g) and ν is the normal vector to Σ in M .
In the literature other possible definitions of the Willmore functional for immersions in a Riemannian manifold

were considered, for example:∫
Σ

|A|2 dμ,

∫
Σ

|Å|2 dμ, or
∫
Σ

(
H 2 + κM

)
dμ.
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Here κM denotes the sectional curvature of M . In a curved ambient manifold the Gauss equation and the Gauss–
Bonnet theorem yield

W(Σ) = 1

2

∫
Σ

|A|2 dμ +
∫
Σ

G(ν, ν)dμ + 2π
(
1 − q(Σ)

)

where q(Σ) is the genus of Σ , G = Ric− 1
2 Scg is the Einstein tensor, Ric denotes the Ricci curvature and Sc the

scalar curvature of (M,g). Hence, the functionals above differ by lower order terms involving the curvature of (M,g).
In particular, if (M,g) = (R3, δ) the only difference is a multiple of q(Σ).

In this paper we are interested in surfaces of Willmore type, i.e. critical points of W subject to an area constraint.
These surfaces are solutions of the Euler–Lagrange equation

�H + H |Å|2 + H Ric(ν, ν) + λH = 0,

with the Lagrange parameter λ. In [9] we studied spherical surfaces of Willmore type with positive mean curvature in
small geodesic balls. Assuming a certain lower bound on the Lagrange parameter, we showed that such surfaces can
only concentrate at critical points of the scalar curvature of M . This paper establishes the existence of minimizers of
W with fixed small area and verifies that the minimizers satisfy the assumptions of [9]. Our main result is as follows:

Theorem 1.1. Let (M,g) be a compact, closed Riemannian manifold. Then there exists a constant a0 > 0 such that
for all a ∈ (0, a0) there is a smooth spherical surface Σa of positive mean curvature that minimizes the Willmore
functional among all immersed surfaces with area a.

For any sequence ai → 0 there is a subsequence ai′ such that Σai′ is asymptotic to a geodesic sphere centered at
a point p ∈ M where Sc attains its maximum.

The existence of a W 2,2 ∩W 1,∞ conformal immersion minimizing W with prescribed small area was recently and
independently obtained by Chen and Li [2].

Kuwert and Schätzle [8] constructed smooth minimizers in a conformal class of the Willmore functional in R
3.

Existence was recently generalized to arbitrary co-dimension by Kuwert and Li [6] in the class W 2,2 ∩ W 1,∞ and by
Rivière [14].

The existence of a smooth minimizer of the Willmore functional in R
n with prescribed genus was first proved by

Simon [16] under a Douglas-type condition, which was established by Bauer and Kuwert [1] (see also [14] for a new
proof of this result). Recently, Schygulla [15] suitably modified the arguments of Simon in order to prove the existence
of a minimizing Willmore sphere in R

3 with prescribed isoperimetric ratio.
Under suitable curvature assumptions, Kuwert, Mondino, and Schygulla [7] recently showed the existence of

smooth spherical minimizers of the functionals
∫
Σ

|A|2 dμ and
∫
Σ

(1 + |H |2)dμ in Riemannian manifolds. The role
of the curvature assumptions is to ensure a uniform bound on the area of surfaces in a minimizing sequence.

Some other existence and non-existence results of critical points of W by Mondino can be found in [11,12].
Previously, in a joint work with F. Schulze [10], we proved the existence of a foliation of the end of an asymp-

totically flat manifold with positive mass by spherical surfaces of Willmore type. For the existence result we studied
perturbed geodesic spheres and we used the implicit function theorem to find suitable deformations of these spheres.

In this paper we use the direct method of the calculus of variations in order to construct the minimizer of W .
A major difficulty is the invariance of W under diffeomorphisms. We overcome this problem by showing that spherical
surfaces with small enough area have small diameter since the Willmore energy is a priori close to 8π . Hence the
surface is contained in a small geodesic ball around a point p ∈ M where the metric g is a small perturbation of the
Euclidean metric. Thus we can apply a result of De Lellis and Müller [3,4] which gives the existence of a W 2,2 ∩
W 1,∞ conformal parametrization F : S2 → Σ ⊂ R

3 of Σ . Therefore, instead of studying minimizing sequences of
immersions fk : Σk → M of W , we consider minimizing sequences of parametrizations Fk ∈ W 2,2 ∩ W 1,∞(S2,R3).
Within this class we are able to show the existence of a minimizer of W .

In order to show the higher regularity of the minimizer in W 2,2 ∩ W 1,∞ we suitably modify the arguments of [7]
and [15]. In our situation their arguments heavily simplify since the smallness of the area rules out bad points for the
minimizing sequence and we can use the fact that there exists a limiting parametrization.
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As the last step we show that the minimizers we construct satisfy the assumptions of the main result in [9] and
hence we conclude that the minimizing surfaces have to concentrate around a maximal point of the scalar curvature
of M as the area tends to zero.

In the following we give a brief outline of the paper. In Section 2 we review manifolds with bounded geometry
and show that the diameter estimates of [16] extend to these ambient manifolds. Moreover we show that by a scaling
argument one can adjust the area of a surface without changing the Willmore energy too much. This fact will be
crucial in the proof of the smoothness of the minimizer of W with prescribed area.

In Section 3 we study the Willmore functional for immersions F ∈ W 2,2 ∩ W 1,∞(S2,R3) and we show the lower
semi-continuity and the differentiability of the functional.

In Section 4 we construct the smooth minimizer and hence prove the existence part of Theorem 1.1 using the
methods described above.

In Section 5 we prove an integral estimate and estimate for the Lagrange parameter of the minimizer. These esti-
mates then allow us to apply the results of [9].

In Appendix A we derive a variant of the stability inequality of minimal surfaces for surfaces of Willmore type with
positive mean curvature. Using the methods of [5] we are then able to partially classify complete surfaces of Willmore
type with positive mean curvature in Riemannian manifolds. As a corollary we obtain that the only complete surfaces
of this type in R

3 are round spheres.

2. Preliminaries

2.1. Manifolds with bounded geometry

In this section we recall some basic properties of manifolds with bounded geometry. The main point is that such
manifolds have uniformly controlled normal coordinates.

Definition 2.1. Let (M,g) be a complete Riemannian manifold. We say that (M,g) has bounded geometry, if there
exists a constant 0 < CB < ∞ such that for each p ∈ M we have inj(M,g,p) � C−1

B and if the Riemann tensor and
its first derivative are bounded |Rm | + |∇ Rm | � CB .

In the following we use Br to denote a Euclidean ball centered at the origin of radius r and Br (p) ⊂ M to denote
a geodesic ball of radius r centered at p ∈ M .

Remark 2.2. If (M,g) has bounded geometry with constant CB , then there exist constants h0 < ∞ and ρ0 > 0,
depending only on CB , such that for every p ∈ M , we can introduce normal coordinates φ : Bρ0 → Bρ0(p) for the
metric g such that in these coordinates the metric g satisfies

g = gE + h,

with

sup
Bρ0

(|x|−2|h| + |x|−1|∂h| + ∣∣∂2h
∣∣) � h0.

Here gE denotes the Euclidean metric induced by the normal coordinates, |x| denotes the Euclidean distance to p and
∂ the connection of gE .

If (M,g) is compact or asymptotically flat, then it is of bounded geometry for some constant CB .

2.2. Area, diameter and the Willmore energy

To proceed, we need a generalization of Lemma 1.1 from [16] to general ambient manifolds. Although this is
straightforward, we present the proof here to show where the non-flat ambient geometry has to be taken into account.
For ease of presentation, we split this into three separate statements.
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Lemma 2.3. (Cf. [9, Lemma 2.2].) Let g = gE + h on Bρ0 be given, such that

sup
Bρ0

(|x|−2|h| + |x|−1|∂h|) � h0.

Then there exists a purely numerical constant c > 0 such that if ρ1 := min{ρ0,
1

c
√

h0
}, then for all surfaces Σ ⊂ Br

with r ∈ (0, ρ1) we have that

|Σ |� r2W(Σ).

The following proposition is very similar to the calculations in [16, Section 1]. We add only minor modifications
in order to deal with the non-flat background.

Proposition 2.4. Let g = gE + h on Bρ0 be given, such that

sup
Bρ0

(|x|−2|h| + |x|−1|∂h|) � h0.

Then there exists a purely numerical constant c, such that for every smooth surface Σ ⊂ Bρ0 with ∂Σ ⊂ ∂Bρ0 and
0 ∈ Σ we have that

π � c
((

1 + h0r
2)r−2|Σr | +W(Σr)

)
for all r � ρ. Here Σr := Σ ∩ Br .

Proof. In Bρ0 consider the position vector field x. We denote by c a constant that is purely numerical, but which may
change from line to line. For all surfaces Σ as in the statement we have

|divΣ x − 2|� ch0|x|2
in view of the assumption on h. Furthermore, we calculate that in Bρ0

d|x| = x

|x| .
In particular, away from the origin, we have

divΣ

(|x|−2x
) = |x|−2 divΣ x − 2|x|−3d|x|(xT

)
.

Thus ∣∣divΣ

(|x|−2x
) − 2|x|−4

∣∣x⊥∣∣2∣∣� ch0, (1)

where x⊥ denotes the projection of x onto the normal bundle of Σ .
Choose 0 < s < r < ρ0 such that Σ intersects ∂Br and ∂Bs transversely (note that the set of radii satisfying this

condition is dense in (0, ρ0)). Let

Σs,r := Σ ∩ (Br \ B̄s)

and integrate Eq. (1) on Σs,r to obtain∣∣∣∣
∫

Σs,r

divΣ

(|x|−2x
)

dμ −
∫

Σs,r

2|x|−4|x⊥|2 dμ

∣∣∣∣� ch0|Σs,r |. (2)

Using Stokes, we infer that∫
Σs,r

divΣ

(|x|−2x
)

dμ =
∫

Σs,r

H |x|−2〈x, ν〉dμ −
∫

Σ∩∂Bs

|x|−2〈x,η〉dσ +
∫

Σ∩∂Br

|x|−2〈x,η〉dσ. (3)

Here ν is the normal vector of Σ and η denotes the co-normal of ∂Bs ∩ Σ and ∂Br ∩ Σ in Σ respectively. We chose
the orientation so that η points in direction of ∇r . To proceed, we note that
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∫
Σ∩∂Bσ

|x|−2〈x,η〉dσ = σ−2
∫

Σ∩∂Bσ

〈x,η〉dσ = σ−2
∫

Σσ

divΣ xT dσ,

so that∣∣∣∣
∫

Σ∩∂Bσ

|x|−2〈x,η〉dσ − 2σ−2|Σσ | + σ−2
∫

Σσ

H
〈
x⊥, ν

〉
dμ

∣∣∣∣� ch0|Σσ |. (4)

Furthermore∫
Σs,r

|x|−4
∣∣x⊥∣∣2 − 1

2
H |x|−2〈x, ν〉dμ =

∫
Σs,r

∣∣∣∣|x|−2x⊥ − 1

4
Hν

∣∣∣∣
2

− 1

16
H 2 dμ. (5)

Inserting (3)–(5) into (2), we infer that

∫
Σs,r

∣∣∣∣|x|−2x⊥ − 1

4
Hν

∣∣∣∣
2

dμ − 1

2
s−2

∫
Σs

H 〈x, ν〉dμ + s−2|Σs |

� r−2|Σr | + 1

8
W(Σs,r ) − 1

2
r−2

∫
Σr

H 〈x, ν〉dμ + ch0|Σr |.

Since Σ is smooth at the origin, we can let s → 0 and drop the square term on the left to obtain

π � r−2|Σr | + 1

8
W(Σr) − 1

2
r−2

∫
Σr

H 〈x, ν〉dμ + ch0|Σr |.

Using Cauchy–Schwarz on the third term and recalling that r < ρ0 we infer the estimate

π � c
((

1 + h0r
2)r−2|Σr | +W(Σr)

)
(6)

for a purely numerical constant c. Since the values of r for which (6) holds are dense in (0, ρ0] we arrive at the claimed
estimate by approximation. �

The next lemma shows that the diameter of a surface Σ contained in a Riemannian manifold (M,g) is bounded in
terms of its area and its Willmore energy. We define

diam(Σ) := max
{
d(M,g)(p, q): p,q ∈ Σ

}
to be the extrinsic diameter of Σ . Here d(M,g)(p, q) denotes the geodesic distance of p and q in the ambient mani-
fold M .

Lemma 2.5. Let (M,g) be a manifold with CB -bounded geometry. Then there exists a constant C depending only on
CB such that for all smooth connected surfaces Σ we have

diam(Σ) � C
(|Σ |1/2W(Σ)1/2 + |Σ |).

Proof. Let h0 and ρ0 be as in Remark 2.2. Choose p,q ∈ Σ such that d := d(M,g)(p, q) = diam(Σ). Assume for now
that r ∈ (0, d

2 ) is chosen such that r < ρ0.
Let N be the largest integer smaller than d/r and let p0 = p. For j = 1, . . . ,N − 1 we choose pj ∈ Σ at distance

(j + 1
2 )r to p0, which is possible since Σ is connected. Then the geodesic balls Br/2(pj ) are pairwise disjoint for

j = 0, . . . ,N − 1. Using Proposition 2.4 with pj as center and summing over j yields

Nπ � c
(
W(Σ) + (

1 + h0r
2)r−2|Σ |). (7)
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With this in mind, we let

r := min

{
ρ1

2
,

1

4

√
|Σ |

W(Σ)

}
,

where ρ1 = min{ρ0,
1

c
√

h0
} is such that Lemma 2.3 applies with ρ0 and h0 as above.

We have to check that r < d/2. Assume for the contrary that d/2 � r . Then in particular d � ρ1 and Lemma 2.3
implies that√

|Σ |
W(Σ)

� d � 2r � 1

2

√
|Σ |

W(Σ)
,

a contradiction. Hence r < d/2 and thus N � d
2r

. Revisiting (7) thus yields

d � c
(
rW(Σ) + (

1 + h0r
2)r−1|Σ |)

and since

r−1 � max

{
2

ρ1
,4

√
W(Σ)

|Σ |
}

we find that

d � c
(
1 + r2h0

)√|Σ |W(Σ) + c/ρ1|Σ |
� c

(
1 + r2h0

)√|Σ |W(Σ) + c
(
ρ−1

0 + √
h0

)|Σ |.
This yields the claimed estimate. �
2.3. Area adjustment by scaling

Lemma 2.6. Let (M,g) be a manifold with CB -bounded geometry. Then there exists ρ1 > 0 with the following prop-
erty. Let r ∈ (0, ρ1), p ∈ M , and let x be the position vector field with respect to geodesic normal coordinates in
Br (p). Denote by Φ : Br/4(p) × (−∞,2) → Br (p) the flow associated to x. Then for every a ∈ R and Σ ⊂ Br/4(p)

with |Σ | ∈ ( a
2 , 3a

2 ) there exists t0 ∈ R with |Φt0(Σ)| = a and |t0| � 2 ||Σ |−a|
a

.

Proof. Let ρ0 and h0 as in Remark 2.2. We choose ρ1 ∈ (0, ρ0) such that

|∇x − Id |� 1

2

on Bρ1(p) for all p ∈ M . Note that then ρ1 depends only on CB .
Let r ∈ (0, ρ1) and Σ ′ ⊂ Br (p) be an arbitrary surface with |Σ ′| � a/2. Then we calculate that

d

dt

∣∣∣∣
t=0

∣∣Σ ′∣∣ =
∫
Σ ′

H 〈x, ν〉dμ =
∫
Σ ′

divΣ ′ x dμ�
∣∣Σ ′∣∣� a

2
.

If we consider Σ as in the statement of the lemma, we can apply this estimate to Σt = Φt(Σ) as long as Σt ∈ Br(p)

and |Σt | ∈ ( a
2 , 3a

2 ). In particular the area of Σt is a continuous and strictly increasing function of t . In addition we
have that∣∣Σt+

∣∣� a for t+ := max

{
0,2

a − |Σ |
a

}
, and

∣∣Σt−
∣∣� a for t− := min

{
0,2

|Σ | − a

a

}
.

This yields the claim. �
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Lemma 2.7. Let (M,g) be a manifold with CB -bounded geometry and let ρ1, be as in Lemma 2.6. There exists a
constant C depending only on CB with the following property. Let r ∈ (0, ρ1) and let Σ ⊂ Br/2(p). Then

d

dt

∣∣∣∣
t=0

∫
Σt

|At |2 dμt � C|Σ |1/2
(∫

Σ

H 2 dμ

)1/2

+ Cr

∫
Σ

|A|2 dμ + C(1 + r)|Σ |.

Here we use the notation of Lemma 2.6, so that Σt = Φt(Σ), At denotes the second fundamental form of Σt and dμt

its induced measure.

Proof. We use the Gauss equation to write∫
Σ

|A|2 dμ =
∫
Σ

H 2 dμ − 2
∫
Σ

G(ν, ν)dμ − 4π
(
1 − g(Σ)

)

where g(Σ) is the genus of Σ and G(ν, ν) = Ric− 1
2 Scg. Therefore we have

d

dt

∣∣∣∣
t=0

∫
Σt

|At |2 dμt = 2δ〈x,ν〉W(Σ) − δ〈x,ν〉V(Σ)

where

V(Σ) = 2
∫
Σ

G(ν, ν)dμ.

We estimate the variations of W and V separately. We have that

|∇x − Id |� C|x|2 and |∇2x| � C (8)

where C is a constant depending only on CB .
Consider the function 〈x, ν〉 on Σ . A calculation shows that with respect to an adapted ON-Frame {e1, e2, e3 = ν},

we have

�〈x, ν〉 = 〈∇ei ,ei
x, ν〉 − H 〈∇νx, ν〉 + 2〈∇ei

x, ek〉Aik − 〈x, ν〉|A|2 + 〈x, ek〉∇iAik

= H − 〈x, ν〉|A|2 + 〈x, ek〉∇ek
H + O(1) + O(r) ∗ A.

In the last equality we used the Codazzi equation to rewrite divA = ∇H + Ric(ν, ·) together with the fact that x =
O(r). In addition we used (8) and use the notation O(1) for terms which are bounded by a constant C and O(r) ∗ A

for terms bounded by Cr|A|. Here as usual C depends only on CB .
We calculate the variation of the Willmore functional with respect to scaling:

δ〈x,ν〉W =
∫
Σ

〈x, ν〉(�H + H |Å|2 + H Ric(ν, ν)
)

dμ

=
∫
Σ

H�〈x, ν〉 + 〈x, ν〉H |Å|2 + 〈x, ν〉H Ric(ν, ν)dμ

=
∫
Σ

H 2 − 1

2
H 3〈x, ν〉 + H∇kH 〈x, ek〉 + H

(
O(1) + O(r) ∗ A

)
dμ. (9)

Integrate by parts the third term on the right to calculate further∫
Σ

H∇kH 〈x, ek〉dμ =
∫
Σ

1

2
∇k

(
H 2)〈x, ek〉dμ = −1

2

∫
Σ

H 2∇k〈x, ek〉dμ

= −1

2

∫
H 2 divΣ x − H 3〈x, ν〉dμ.
Σ
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Inserting this into Eq. (9) and taking into account (8) yields that

δ〈x,ν〉W =
∫
Σ

H
(
O(1) + O(r) ∗ A

)
dμ.

This can be estimated as follows:

|δ〈x,ν〉W|� C|Σ |1/2
(∫

Σ

H 2 dμ

)1/2

+ Cr

∫
Σ

|A|2 dμ.

We proceed with the variation of V(Σ). From [10, (75)] we obtain that

1

2
δ〈x,ν〉V(Σ) =

∫
Σ

〈x, ν〉(M∇νG(ν, ν) + HG(ν, ν)
) − 2G

(
ν,∇(〈x, ν〉))dμ.

Straightforward estimates show that

∣∣δ〈x,ν〉V(Σ)
∣∣� C(1 + r)|Σ | + Cr|Σ |1/2

(∫
Σ

|A|2 dμ

)1/2

.

This implies the claim. �
Lemma 2.8. Let (M,g) be a manifold with CB -bounded geometry and let ρ1, be as in Lemma 2.6. For every constant
C0 there exists a constant C1 with the following properties. If r ∈ (0, ρ1), a ∈ (0,C0r

2) and Σ ⊂ Br/4(p) with
|Σ | ∈ ( a

2 , 3a
2 ) then there exists a surface Σ ′ ⊂ Br (p) with |Σ ′| = a and∣∣∣∣

∫
Σ ′

|A|2 dμ −
∫
Σ

|A|2 dμ

∣∣∣∣� C1r
||Σ | − a|

a

(
1 +

∫
Σ

|A|2 dμ

)
.

Proof. Let Σ be as in the statement. Using Lemma 2.6 we can find Σ ′ ⊂ Br (p) with |Σ ′| = a in the form Σ ′ =
Φt0(Σ), where Φt is as in Lemma 2.6. In addition, we have that |t0|� 2 ||Σ |−a|

a
� 2.

To analyze the amount the second fundamental form has changed, we assume for definiteness that t0 > 0. From
Lemma 2.7 we find that for all Σt = Φt(Σ) with t ∈ [0, t0] we have that

d

dt

(
1 +

∫
Σt

|At |2 dμt

)
� Cr

(
1 +

∫
Σt

|At |2 dμt

)
,

where the constant C only depends on CB , C0 and ρ1. In particular, we used that the area of all Σt is bounded by
3C0

2 r2 � 3C0
2 ρ1r . Integrating this ordinary differential inequality on [0, t0] and using the fact that |t0| � 2 is a priori

bounded, we arrive at the claimed estimate. �
3. Analytical aspects of the Willmore functional

In this section we consider the Willmore functional in the space of parametrizations which are in a subset of
W 2,2(S2,R3) ∩ W 1,∞(S2,R3). We assume that R3 is equipped with a smooth metric g of which we assume that with
respect to standard coordinates all components and derivatives up to second order thereof are bounded. When we refer
to coordinates on R

3 we use Greek indices, and when referring to coordinates on S2 we use Latin indices.
We define the space

B := {
F ∈ W 2,2(S2,R3) ∩ W 1,∞(

S2,R3) ∣∣ ḡ, ḡ# ∈ L∞(
S2) ∩ W 1,2(S2)}

where we denote by ḡ the pull-back metric F ∗g on S2 and by ḡ# its inverse. The function spaces and all tensor norms
are defined with respect to the standard metric on the sphere and the standard metric gE on R

3.
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3.1. Definition of the Willmore functional

First we establish that the Willmore functional

W(F ) = 1

2

∫
F(S2)

H 2 dμ

is well defined for F ∈ B . Denote by hij the second fundamental form of F(S2), by Γ̄ the Christoffel symbols of ḡ

and by Γ the Christoffel symbols of the ambient metric g. The Weingarten equation gives

Fα
ij = −hij ν

α + Γ̄ m
ij F α

m − Γ α
βγ F

β
i F

γ

j . (10)

Here we use the shorthand notation

Fα
i = ∂Fα

∂xi
and Fα

ij = ∂2Fα

∂xi∂xj
.

In fact we can take Eq. (10) as the definition of the second fundamental form. Note that since ḡ, ḡ# ∈ W 1,2(S2) we
have that Γ̄ ∈ L2(S2) so that the second fundamental form is in L2(S2). Taking the trace of (10) gives

H = −(
ḡijF α

ij + (
Γ α

βγ ◦ F
)
F

β
i F

γ

j

)
(gαδ ◦ F)νδ. (11)

In particular, we can write the Willmore functional as

W(F ) = 1

2

∫
S2

[(
ḡijF α

ij + (
Γ α

βγ ◦ F
)
F

β
i F

γ

j

)
(gαδ ◦ F)νδ

]2√|ḡ|dx (12)

where |ḡ| = det(ḡ) and dx denotes the standard volume element on S2. Clearly W is continuous on B where we equip
B with the topology induced by convergence of F in W 2,2(S2,R3) ∩ W 1,∞(S2,R3) and ḡ and ḡ# in W 1,2 ∩ L∞.

3.2. Lower semi-continuity

In this section we show lower semi-continuity of W in B with respect to weak convergence.

Proposition 3.1. Assume that Fk,F ∈ B are parametrizations of surfaces Σk and Σ and that g is a smooth metric on
R

3 such that all coefficients of g with respect to standard coordinates on R
3 and all their derivatives are bounded. If⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Fk ⇀ F weakly in W 2,2
(
S2,R3, gE

)
,

Fk
∗
⇀ F weakly-* in W 1,∞(

S2,R3, gE
)
,

ḡk
∗
⇀ ḡ weakly-* in L∞(

S2
)

and

ḡ#
k

∗
⇀ ḡ# weakly-* in L∞(

S2
)
,

(13)

where (ḡk)ij := g(
∂Fk

∂xi ,
∂Fk

∂xj
) are the coefficients of the induced metric on Σk , pulled back to S2, then

W(F ) � lim inf
k→∞ W(Fk).

Proof. Let |ḡk| = det(gk)ij , and let νk be the normal of Σk with respect to g. The above convergence (13) implies
that for any 1 < q < ∞ we have

(ḡk)ij → ḡij in Lq
(
S2), (ḡk)

ij → ḡij in Lq
(
S2),

νk → ν in Lq
(
S2), νk

∗
⇀ ν in L∞(

S2),
|ḡk| → |ḡ| in Lq

(
S2), |ḡk| ∗

⇀ |ḡ| in L∞(
S2). (14)
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From Eq. (12) we find that

W(Fk) = 1

2

∫
S2

(
ḡ

ij
k

(
(Fk)

α
ij + Γ α

βγ ◦ Fk(Fk)
β
i (Fk)

γ

j

)
(g ◦ Fk)αβν

β
k

)2√|gk|dx.

We split this expression into two parts

W(Fk) =W1(Fk) +W2(Fk)

with

W1(Fk) = 1

2

∫
S2

(
ḡ

ij
k

∂2Fα
k

∂xi∂xj
(g ◦ Fk)αβν

β
k

)2√|gk|dx

and

W2(Fk) = 1

2

∫
S2

(
2ḡ

ij
k (Fk)

α
ij (gαβ ◦ Fk)ν

β
k ḡab

k

(
Γ δ

εμ ◦ Fk

)
(Fk)

ε
a(Fk)

μ
b (gδρ ◦ Fk)ν

ρ
k

+ (
ḡ

ij
k Γ α

βγ ◦ Fk(Fk)
β
i (Fk)

γ

j (gαβ ◦ Fk)ν
β
k

)2)√|gk|dx.

By the Sobolev embedding and smoothness of g it follows that gαβ ◦ Fk converges in L∞(S2) to gαβ ◦ F and that
Γ α

βγ ◦Fk converges in L∞(S2) to Γ α
βγ ◦F . In view of the convergence (14) it thus follows that W2 is continuous with

respect to the convergence in (13):

W2(Fk) → W2(F ) for k → ∞.

To analyze W1(Fk) we let φ be the integrand in the definition of W1(Fk):

W1(Fk) = 1

2

∫
S2

φ
(
ḡ

ij
k , (gαβ ◦ Fk), νk,

√|gk|, (Fk)
α
ij

)
dx.

Then φ is smooth with respect to all variables, φ � 0, and φ is convex with respect to the last set of variables (Fk)
α
ij

as it is the concatenation of the following three maps: The linear (in (Fk)
α
ij ) map

(
ḡ

ij
k , (gαβ ◦ Fk), νk,

√|gk|, (Fk)
α
ij

) �→ ḡ
ij
k (Fk)

α
ij (gαβ ◦ Fk)ν

β
k ,

the convex map ξ �→ ξ2 for ξ ∈ R and the linear multiplication by
√|gk|. Lower semi-continuity then follows as in

the proof of [17, Theorem 1.6]. �
3.3. Differentiability

Given a map F ∈ B and a smooth vector field X ∈ X (R3) we have that X ◦ F is in W 2,2 ∩ W 1,∞(S2,R3, gE).
Furthermore, for small enough ε > 0 the map Ft := F + t (X ◦ F) is in B for all t ∈ (−ε, ε) since the inverse of the
metric ḡt induced by Ft is a smooth function of ḡt .

We can thus calculate the variation of W in direction of X

δXW(F ) = ∂

∂t

∣∣∣∣
t=0

W(Ft ).

A fairly long but standard calculation shows that W is indeed differentiable and that its variation in direction X is
given by

δXW(F ) =
∫
S2

−Hḡij g
(∇2

Fi,Fj
X, ν

) − 2Hḡikḡj lhij g(∇Fi
X,Fj )

+ H 2g(∇νX, ν) − H Ric(X, ν) + 1
H 2 divT X dμ
2
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where Ric denotes the Ricci curvature of g, ∇ the connection of g and ∇2 the second covariant derivative of
vector fields with respect to g. There is also a formulation of the Euler–Lagrange equation for variations X ∈
W 2,2 ∩ W 1,∞(S2,R3) which are not induced by a smooth ambient variation. To consider such vector fields, deriva-
tives of X have to be calculated with the pull-back ∇∗ = F ∗∇ of the Levi-Civita connection of g. This affects only
the way in which the second derivatives are calculated. We obtain the following expression:

δXW(F ) =
∫
S2

−Hḡij g
((∇∗)2

Fi,Fj
X, ν

) − 2Hḡikḡj lhij g
(∇∗

Fi
X,Fj

) − H Ric(X, ν) + 1

2
H 2 divT X dμ.

Note that if F is C4(S2,R3), we can integrate by parts the terms involving derivatives of X and write the variation in
a more familiar form:

δXW(F ) =
∫
S2

g(X,ν)
(
�H + H |Å|2 + H Ric(ν, ν)

)
dμ.

4. Direct minimization

In this section we construct minimizers for the Willmore functional subject to a small area constraint by direct
minimization. We assume that (M,g) is compact without boundary.

Fix a point p ∈ M . For r < inj(M,g,p) we consider the geodesic spheres Sr(p). By [11] these surfaces satisfy

W
(
Sr(p)

) = 8π − 4πr2

3
Sc(p) + O

(
r3). (15)

In particular, for a given ε > 0 there exists a constant 0 < a0 = a0(ε) such that for |Sr(p)| � a0 we have W(Sr) �
8π + ε.

Fix some a ∈ (0, a0). We consider a minimizing sequence for W of surfaces Σk with |Σk| = a. By comparison
with geodesic spheres, we can assume that W(Σk) � 8π + ε. Thus, in view of Lemma 2.5 there exists a constant C

such that

diam(Σk) � C
(
a

1/2
0 + a0

)
for all k. By choosing a0 small enough, we can ensure that 4 diam(Σk) < inj(M,g) uniformly. By compactness of M ,
by choosing a0 small enough, and by passing to a subsequence if necessary, we can assume that all the Σk are
contained in Bρ0/16(p) for some suitable p ∈ M , where ρ0 is as in Remark 2.2. We decorate all geometric quantities
on Σk by the subscript k, i.e. Hk, νk, . . . .

By the Gauss equation, we have

W(Σk) = 8π +
∫
Σk

|Åk|2 dμk +
∫
Σk

G(νk, νk)dμk.

By assumption we have W(Σk) � 8π + ε. Since the curvature of (M,g) is bounded, we can estimate the last term by
Ca0. Thus we obtain the estimate

‖Åk‖2
L2(Σk)

� ε + Ca0.

From |Ak|2 = |Åk|2 + 1
2H 2

k , we also get

‖Ak‖2
L2(Σk)

� 8π + 2ε + Ca0.

In the following proposition we show that we can pass this sequence to a (weak) limit, and that W is lower semi-
continuous under this limit.

Proposition 4.1. Let (M,g) be compact without boundary. Then there exists ε > 0, depending only on the geometry
of M , such that the following holds. If Σk is a sequence of immersed surfaces with

|Σk| = a < ε and W(Σk) < 8π + ε (16)
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then there exists a family of parametrizations

Fk : S2 → Σk

such that the Fk converge weakly in W 2,2 and weakly-* in W 1,∞ to a limiting parametrization

F : S2 → Σ ⊂ (M,g)

such that |Σ | = a and

W(Σ)� lim inf
k→∞ W(Σk).

Proof. Let (ρ0, h0) be as in Remark 2.2. Using the reasoning prior to the statement of this proposition, we can assume
without loss of generality, that Σk ⊂ Bρ0(p) for some p ∈ M . Introducing normal coordinates x : Bρ0 → Bρ0(p) we
can pull-back the Σk for all k and the metric g to Bρ0 and g has the form

g = gE + h

with h as in Remark 2.2. Assuming that a0 is small enough, it is easy to see that Eq. (16) implies that Σk satisfies

WE(Σk) < 8π + 2ε

where WE denotes the Willmore functional computed with respect to the Euclidean background metric gE . Via the
Gauss equation with respect to the Euclidean background, this implies that∥∥ÅE

k

∥∥
L2(Σk,g

e)
< 2ε

on Σ . The estimates of De Lellis and Müller [3,4] imply that there exist conformal (with respect to the Euclidean back-
ground) parametrizations Fk : S2 → Σk which are uniformly bounded in W 2,2(S2,R3) ∩ W 1,∞(S2,R3). Moreover,
the metric ḡk is conformal to the standard metric on S2 with conformal factor uk which satisfies ‖uk‖C0(S2) � Cε.
Thus there is a subsequence of the Fk which we relabel to Fk , such that for any given 1 � p < ∞ we have⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fk ⇀ F weakly in W 2,2
(
S2,R3, gE

)
,

Fk
∗
⇀ F weakly-* in W 1,∞(

S2,R3, gE
)
,

Fk → F in W 1,p
(
S2,R3, gE

)
,

ḡk
∗
⇀ ḡ weakly-* in L∞(

S2
)

and

ḡ#
k

∗
⇀ ḡ# weakly-* in L∞(

S2
)
,

(17)

for a function F ∈ W 1,∞ ∩W 2,2(S2,R3) and a metric ḡ ∈ L∞(S2). Denote Σ = F(S2), then this convergence implies
that |Σ | = limk→∞ |Σk| = a. Proposition 3.1 implies the lower semi-continuity of W with respect to the convergence
in Eq. (17). �

In the following we show that the limiting parametrization F ∈ W 2,2 ∩ W 1,∞(S2,M) of Σ of the minimizing
sequence Fk for the Willmore functional is smooth. This follows from suitable modifications of a recent result of
Kuwert, Mondino and Schygulla [7] on the existence of smooth spheres minimizing

∫
Σ

|A|2 dμ resp.
∫
Σ

(|H |2 +1)dμ

in Riemannian manifolds satisfying suitable curvature conditions and a result of Schygulla [15] on the existence of a
minimizing Willmore sphere with prescribed isoperimetric ratio in R3. Both of these results rely on the fundamental
existence result (and especially the approximate graphical decomposition lemma) of Simon [16].

In the following we indicate how to modify the arguments of Section 3 in [7] in order to handle the present situation.
First of all we note that because of the above proposition we get that the Radon measures on M

μk(E) =
∫

F−1
k (E)

dμgk
(y) and αk(E) =

∫
F−1

k (E)

|Ak|2 dμgk
,

where gk is the metric on S2 induced by Fk , converge weakly to limiting Radon measures μ and α. Note that for
W < 8π + ε the monotonicity formula implies that the density of μ is one on its support. We have that
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μ(E) =
∫

F−1(E)

dμg(y)

is the induced measure of the limiting immersion F : S2 → R
3.

We let δ > 0 and we define δ-bad points by

Bδ = {
ξ ∈ sptμ

∣∣ α
({ξ})� δ2}.

Note that the δ here plays the role that ε0 has in [7].
We remark that for any δ > 0 we can choose ε � Cδ2 for a suitable constant C depending only on CB so that

Bδ = ∅. This can be seen as follows:
Assume that Bδ ⊃ {p1, . . . , pl} and choose a radius ρ > 0 such that Bρ(pi)∩Bρ(pj ) = ∅ for all 1 � i, j � l. Then

we have

8π + ε > lim
k→∞W(Σk)

� lim
k→∞

l∑
i=1

W
(
Σk,Bρ(pi)

) +W
(

Σk,Σk

∖ l⋃
i=1

Bρ(pi)

)

�W
(

Σ,Σ
∖ l⋃

i=1

Bρ(pi)

)
+ lδ2,

where W(Σ,E) = 1
2

∫
Σ∩E

|H |2 dμ. Since H ∈ L2(Σ) we can choose ρ so small that
∑l

i=1 W(Σ,Bρ(pi)) � 1
2 lδ2

and hence we get

8π + ε > W(Σ) + 1

2
lδ2 � 8π − Cε + 1

2
lδ2,

where C only depends on CB and not on the sequence Σk . This implies that l = 0, provided ε � (4(C + 1))−1δ2.
Choosing δ = δ0 from the approximate graphical decomposition lemma (in the form of Lemma 3.4 in [7]) and

choosing ε according to the above reasoning, we conclude that locally sptμk can be written as a multivalued graph
away from a small set of pimples.

The key result in order to get the regularity is a power-decay result for the second fundamental form (see e.g.
Lemma 3.6 in [7]). Once we have this estimate, we can follow the rest of the argument of [7] in order to conclude that
sptμ can locally be written as C1,α ∩ W 2,2 graphs. Note that in our case we already ruled out the existence of bad
points and we also know that the limiting measure μ is coming from the limiting immersion F . After having obtained
this preliminary regularity result, we can express W in terms of the graph functions and since F is a minimizer of
W subject to the area constraint, we conclude that graph functions solve the weak Euler–Lagrange equation. Using
the difference quotient technique as in [16] we finally get that sptμ and hence F are smooth (in our case we get an
additional lower order term coming from the Lagrange parameter but this doesn’t affect the very general argument of
Simon).

In order to get the power-decay result for Ak we follow closely the arguments of Lemma 3.6 in [7] and Lemma 5
in [15]. More precisely we use the same replacement procedures for the graph functions uk on balls of radii γ ∈
(�/16, �/32) as in the above mentioned lemmas in order to get a comparison surface Σ̃k which satisfies∣∣|Σ̃k| − a

∣∣� c�2.

Using Lemma 2.8 (note that Σk ⊂ Bρ/16(p) and hence by construction we can assume that Σ̃k ⊂ Bρ/4(p)) we con-
clude that there exists a surface Σ ′

k with |Σ ′
k| = a and∫

Σ ′
k

∣∣A′
k

∣∣2 dμ′
k �

∫
Σ̃k

|Ãk|2 ˜dμk + C�2a−1.

These last two estimates allow us to use Σ ′
k as a comparison sequence to the minimizing sequence Σk and once we

obtained this fact we can follow the rest of the argument of Lemma 3.6 in [7] word by word in order to get the desired
power-decay.
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Thus we have proved:

Theorem 4.2. Let (M,g) be a compact, closed Riemannian manifold. Then there exists a constant a0 > 0 such that
for all a ∈ (0, a0) there is a smooth surface Σa that minimizes the Willmore functional among all immersed surfaces
with area a.

5. The geometry of critical points

In this section we consider smooth solutions to the Euler–Lagrange equation of the Willmore functional subject to
an area constraint, that is surfaces Σ on which we have

�H + H |Å|2 + H Ric(ν, ν) + Hλ = 0. (18)

We show that if the area is small and the Willmore energy is close to that of the Euclidean sphere, Σ is very close to a
geodesic sphere. This can be used to conclude via the main result in [9], that Σ is close to a critical point of the scalar
curvature.

Proposition 5.1. Assume that (M,g) has CB -bounded geometry. Then there exist constants C < ∞ and ε > 0, de-
pending only on CB such that the following holds. If Σ ⊂ (M,g) is a connected immersion and:

1. Σ satisfies Eq. (18),
2. λ� ε|Σ |−1,
3. W(Σ)� 8π + ε, and
4. |Σ |� ε.

Then Σ satisfies the following estimate:∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 + H 4|Å|2 dμ� C.

For the proof we need the Bochner identity in the following form:

Lemma 5.2. Let (M,g) be a manifold and Σ ⊂ M a smooth, compact, immersed 2-surface. Then for all f ∈ C∞(Σ)

we have that:∫
Σ

∣∣∇2f
∣∣2 dμ =

∫
Σ

(�f )2 + |∇f |2
(

1

2
|Å|2 − 1

4
H 2 − 1

2
Sc+Ric(ν, ν)

)
dμ.

Here Sc and Ric denote the scalar and Ricci curvature of (M,g).

Proof. The Bochner identity states that∫
Σ

∣∣∇2f
∣∣2

dμ =
∫
Σ

(�f )2 − ΣRc(∇f,∇f )dμ

where Σ Rc denotes the intrinsic Ricci curvature of Σ . Since Σ Rc(∇f,∇f ) = 1
2

Σ Sc|∇f |2 we can use the Gauss
equation

1

2
ΣSc = 1

2
Sc−Ric(ν, ν) + 1

4
H 4 − 1

2
|Å|2

to infer the claim. �
Proof of Proposition 5.1. By the integrated Gauss equation we have that

W(Σ) = 8π +
∫

|Å|2 dμ + 2
∫

G(ν, ν)dμ
Σ Σ



T. Lamm, J. Metzger / Ann. I. H. Poincaré – AN 30 (2013) 497–518 511
so that by the assumptions on the area and W we obtain

‖Å‖2
L2 � Cε.

Thus by choosing ε small we may later on assume that ‖Å‖2
L2 is as small as we desire.

Furthermore, since |Σ | is small, and W is uniformly bounded, in view of Lemma 2.5, we may also assume that
Σ ⊂ Br (p) for some p ∈ M and r � C|Σ |1/2. Thus, we can use the Michael–Simon–Sobolev inequality as in [9,
Lemma 2.3] with a uniform constant on Σ , that is a constant that is at most double the one in Euclidean space,
provided ε is small enough.

Multiply Eq. (18) by �H and integrate. Using Young’s inequality, integration by parts of the term including λ and
since Ric is bounded, we obtain:∫

Σ

1

2
(�H)2 − λ|∇H |2 dμ � C

∫
Σ

H 2|Å|4 + H 2 dμ.

Thus ∫
Σ

1

2
(�H)2 dμ � C + ε|Σ |−1

∫
Σ

|∇H |2 dμ + C

∫
Σ

H 2|Å|4 dμ. (19)

By the Bochner identity from Lemma 5.2 we infer the estimate∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 dμ � C

∫
Σ

(�H)2 + (
1 + |Å|2)|∇H |2 dμ. (20)

The Michael–Simon–Sobolev inequality implies that∫
Σ

|∇H |2 dμ � C|Σ |
∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 dμ. (21)

Inserting this and Eq. (19) into (20) yields∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 dμ � C + C

∫
Σ

|Å|2|∇H |2 + H 2|Å|4 dμ

+ C
(|Σ | + ε

)∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 dμ.

Thus, if |Σ | and ε are small enough, we can absorb part of the right hand side to the left and we infer that∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 dμ � C + C

∫
Σ

H 2|Å|4 + |Å|2|∇H |2 dμ. (22)

To proceed, recall the Simons identity, which implies that on an arbitrary immersed surface we have

−Åij�Åij + 1

2
H 2|Å|2 = −〈

Å,∇2H
〉 + |Å|4 + |Å|2 Ric(ν, ν) − 2Åij Ål

j Ricil −2〈Å,∇ω〉. (23)

Here ω is the one-form ω = Ric(ν, ·)T where the superscript T denotes projection to the tangential space of Σ .
Multiply (23) by H 2 and integrate. Integration by parts and the Codazzi equation div Å = 1

2∇H + ω yields∫
Σ

H 2|∇Å|2 + 2H∇kHÅij∇kÅij + 1

2
H 4|Å|2 dμ

�
∫ 〈

div
(
H 2Å

)
,∇H + 2ω

〉
dμ + C + C

∫
H 2|Å|4 dμ. (24)
Σ Σ
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Estimate∣∣∣∣
∫
Σ

2H∇kHÅij∇kÅij dμ

∣∣∣∣� 1

4

∫
Σ

H 2|∇Å|2 dμ + 4
∫
Σ

|Å|2|∇H |2 dμ. (25)

Using the Codazzi equation to infer div Å = 1
2∇H + ω we calculate further∫

Σ

〈
div

(
H 2Å

)
,∇H + 2ω

〉
dμ =

∫
Σ

2HÅ(∇H,∇H + 2ω) + H 2〈div Å,∇H + 2ω〉dμ

=
∫
Σ

2HÅ(∇H,∇H + 2ω) + 1

2
H 2|∇H + 2ω|2 dμ

� C + C

∫
Σ

H 2|∇H |2 + |Å|2|∇H |2 dμ. (26)

Combining Eqs. (24), (25) and (26) yields∫
Σ

H 2|∇A|2 + H 4|Å|2 dμ � C + C

∫
Σ

H 2|∇H |2 + |Å|2|∇H |2 + H 2|Å|4 dμ. (27)

In view of (22) we finally infer∫
Σ

∣∣∇2H
∣∣2 + |A|2|∇H |2 + H 2|∇A|2 + H 4|Å|2 dμ� C + C

∫
Σ

H 2|Å|4 + |Å|2|∇H |2 dμ. (28)

To proceed, we apply the Michael–Simon–Sobolev inequality and estimate∫
Σ

H 2|Å|4 dμ � C

(∫
Σ

|∇H ||Å|2 + |H ||Å||∇Å| + H 2|Å|2 dμ

)2

�
(∫

Σ

|Å|2 dμ

)(∫
Σ

|Å|2|∇H |2 + H 2|∇A|2 + H 4|Å|2 dμ

)
. (29)

This shows that if ε and hence ‖Å‖2
L2 is small, the first term on the right of Eq. (28) can be absorbed to the left.

The second term on the right of (28) requires a little more work. By the Michael–Simon–Sobolev inequality we
have ∫

Σ

|Å|2|∇H |2 dμ � C

∫
Σ

|∇Å||∇H | + |Å|∣∣∇2H
∣∣ + |H ||Å||∇H |dμ

� C

(∫
Σ

|Å|2 dμ

)(∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 dμ

)
+ C

∫
Σ

|∇A|2 dμ. (30)

The first term on the right is of the same type as before. To estimate the second integrate the Simons identity (23) to
obtain∫

Σ

|∇Å|2 + 1

2
H 2|Å|2 dμ � C

∫
Σ

|Å|2 − 〈
Å,∇2H

〉 − 2〈Å,∇ω〉 + C|Å|4 dμ. (31)

The Michael–Simon–Sobolev inequality implies that∫
Σ

|Å|4 dμ �
(∫

Σ

|Å|2 dμ

)(∫
Σ

|∇Å|2 + H 2|Å|2 dμ

)
,

so that the last term on the right of (31) can be absorbed to the left. Calculate further that
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−2
∫
Σ

〈Å,∇ω〉dμ = 2
∫
Σ

〈div Å,ω〉dμ

so that by Young’s inequality∣∣∣∣2
∫
Σ

〈Å,∇ω〉dμ

∣∣∣∣� 1

2

∫
Σ

|∇Å|2 dμ + C

∫
Σ

|ω|2 dμ.

Thus the second term on the right of Eq. (31) can also be absorbed to the left. Using Hölder’s inequality we infer the
estimate∫

Σ

|∇Å|2 + H 2|Å|2 dμ � C

(
|Σ | +

∫
Σ

|Å|2 dμ

)
+ C

(∫
Σ

|Å|2 dμ

)(∫
Σ

∣∣∇2H
∣∣2 dμ

)
. (32)

Since the Codazzi equation implies ∇H = 2 div Å − 2ω we furthermore get∫
Σ

|∇H |2 dμ � Cε + C

∫
Σ

|∇Å|2 dμ.

Thus the previous equation implies that∫
Σ

|∇A|2 dμ � Cε + C

(∫
Σ

|Å|2 dμ

)(∫
Σ

∣∣∇2H
∣∣2 dμ

)
. (33)

Substituting this into Eq. (30) yields that∫
Σ

|Å|2|∇H |2 dμ � Cε + Cε

(∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 dμ

)
.

Thus we have shown that all but the constant term on the right of Eq. (22) can be absorbed to the left, provided ε is
small enough. �

We wish to complement these estimates by an estimate for λ.

Proposition 5.3. Let (M,g) be a Riemannian manifold with CB -bounded geometry. Let Σ be a surface satisfying (18)
for some λ ∈ R. Let ρ0 be as in Remark 2.2 and assume that Σ ⊂ Br (p) for some p ∈ M and 0 < r < ρ0. Then we
have the estimate

|λ| � C|Σ |−1
(

|Σ |1/2 + r

∫
Σ

|A|2 dμ

)
.

Proof. The proof is based on the fact that the Willmore functional is scale invariant with respect to the Euclidean
metric. Note that if Σ is of Willmore type we have for all variations with normal velocity f that

δfW(Σ) = λδfA(Σ)

where A denotes the area functional. This implies that if δfA �= 0, we can write

λ = δfW/δfA.

In Euclidean space we can choose f = 〈x, ν〉 to be the normal velocity corresponding to scaling and infer that
δfW = 0 whereas δfA= 2|Σ | so that in combination we get that λ = 0.

In the situation as in the statement, this reasoning still works although with some error terms. Let Σ ⊂ Br (p) as in
the statement of the proposition. Let x denote the position vector field on Bρ0(p) with respect to normal coordinates

on Bρ0(p). Since ∇ ∂

∂xi
(xj ∂

∂xj ) = δ
j
i

∂
∂xj + xjΓ k

ij
∂

∂xk it follows that

|∇x − Id |� Cr2 and
∣∣∇2x

∣∣� C. (34)
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The first step is to estimate the variation of area with respect to a normal variation corresponding to scaling in normal
coordinates. That is, we use f = 〈x, ν〉 as a normal variation for Σ . This yields

δfA(Σ) =
∫
Σ

H 〈x, ν〉dμ =
∫
Σ

divΣ x dμ.

Since |divΣ x − 2|� C|x|2 by (34) and the fact that Σ ⊂ Br (p), we thus find that, provided r is small enough,

δ〈x,ν〉A� |Σ |. (35)

As in the proof of Lemma 2.7 we can estimate that

|δ〈x,ν〉W|� C|Σ |1/2
(∫

Σ

H 2 dμ

)1/2

+ Cr

∫
Σ

|A|2 dμ.

In combination with Eq. (35), this yields the claimed estimate for λ. �
The main result of this section is a straightforward consequence of the combination of Propositions 5.1 and 5.3:

Theorem 5.4. Given a Riemannian manifold (M,g) with CB -bounded geometry there exist constants C < ∞ and
ε > 0 depending only on CB such that the following holds.

Assume that Σ ⊂ (M,g) is a connected immersion that satisfies the following conditions:

1. Σ satisfies Eq. (18),
2. W(Σ)� 8π + ε, and
3. |Σ |� ε.

Then Σ satisfies the following estimate:∫
Σ

∣∣∇2H
∣∣2 + H 2|∇H |2 + H 4|Å|2 dμ� C.

Corollary 5.5. Assume Σ is as in Theorem 5.4. Then we have the following estimates:

‖Å‖L2(Σ) � C|Σ | and ‖H − 2/R‖L∞(Σ) � C|Σ |1/2

where R is such that |Σ | = 4πR2. In particular, if the area of Σ is small enough we have that H > 0.

Proof. In order to show the first estimate we apply the Hölder and Michael–Simon–Sobolev inequality to get∫
Σ

|Å|2 dμ � C|Σ |
∫
Σ

(|∇Å|2 + H 2|Å|2)dμ.

Combining this estimate with (32) and Theorem 5.4 yields∫
Σ

|Å|2 dμ � C|Σ |,

and inserting this new information once more into (32) gives the desired result.
To see the second estimate, note that by the estimates of De Lellis and Müller [3, Theorem 1.1] we have∥∥He − 2/Re

∥∥
L2(Σ)

� C
∥∥Åe

∥∥
L2(Σ)

,

where we denote geometric objects which are calculated with respect to the Euclidean metric by a superscript e. In
the following we assume that Σ ⊂ Br (p) with r � C|Σ |1/2 (see Lemma 2.5).
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From [9, Lemmas 2.1, 3.3] we have that∥∥H − He
∥∥

L2(Σ)
� C|Σ |

and ∣∣|Σ | − |Σ |e∣∣� C|Σ |2
which implies that∣∣R − Re

∣∣� C|Σ |3/2.

Combining the last four estimates with [9, Lemma 2.5] we conclude for |Σ | small enough

‖H − 2/R‖L2(Σ) � C|Σ |. (36)

From [9, Lemma 3.7] we furthermore infer that

‖H − 2/R‖4
L∞(Σ) � ‖H − 2/R‖2

L2(Σ)

∫
Σ

∣∣∇2H
∣∣2 + H 4|H − 2/R|2 dμ. (37)

In order to estimate the right hand side we note that

|H |2 � (|H − 2/R| + 2/R
)2 � 2|H − 2/R|2 + 8/R2

and thus

H 4|H − 2/R|2 � 2H 2|H − 2/R|4 + 8H 2R−2|H − 2/R|2
� 2H 2|H − 2/R|4 + 16R−2|H − 2/R|4 + 64R−4|H − 2/R|2

so that in view of (36)∫
Σ

H 4|H − 2/R|2 dμ � C‖H − 2/R‖4
L∞(Σ) + C.

This estimates the second term in the integral in (37) whereas Theorem 5.4 estimates the first one. In combination we
arrive at

‖H − 2/R‖4
L∞(Σ) � C|Σ |2(C + C‖H − 2/R‖4

L∞(Σ)

)
.

The second term on the right can be absorbed to the left if |Σ | is small enough. This yields the second estimate. �
Corollary 5.6. Let (M,g) be a compact, closed Riemannian manifold. Let Σa be the surfaces from Theorem 4.2.

For any sequence ai → 0 there is a subsequence ai′ such that Σai′ is asymptotic in W 2,2 to a geodesic sphere
Sri′ (pi′) where ri′ = √

ai′/4π and pi′ → p ∈ M and Sc attains its maximum at p.

Proof. If a is small enough, we know from Lemma 2.5 that there exists a point qa ∈ M such that Σa ⊂ Br0(qa) with
2r0 a lower bound for the injectivity radius of (M,g).

We also know that Theorem 5.4 applies to Σa . Hence [3, Theorem 1.1] implies that for ra := √
a/4π there exists

pa ∈ Br0(qa) such that Σa can be parameterized over the Euclidean sphere Sa := Sra (pa) in normal coordinates cen-
tered at qa by ψa : Sa := Sra (pa) → Σa that is conformal with respect to the Euclidean metric in normal coordinates
centered at qa such that

a−1‖ψa − idSa ‖L2(Sra (pa)) + a−1/2
∥∥d(ψa − idSa )

∥∥
L2(Sra (pa))

+ ∥∥d2(ψa − idSa )
∥∥

L2(Sra (pa))

� C‖Å‖L2(Σa) � Ca.

This implies in particular that Σa is W 2,2 close to Sa which in turn is C2-close to the geodesic sphere Sa := Sra (pa)

with respect to g centered at pa . In particular Σa is W 2,2-close to Sa .
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Since the estimates from Theorem 5.4 are sufficient to carry out the analysis in [9], we obtain that |∇ Sc(pa)| → 0
as a → 0.

Since M is compact, there exists a subsequence (ai′) of the sequence ai → 0 and a point p ∈ M so that pai′ → p.
By continuity we have ∇ Sc(p) = 0 and p is a critical point of the scalar curvature. Moreover, from [9, Theorem 5.1]
we obtain the expansion∣∣∣∣W(Σa) − 8π + |Σa|

3
Sc(p)

∣∣∣∣ � Ca3/2.

Comparing this expansion to the one for geodesic spheres, Eq. (15), we find that the scalar curvature of (M,g) attains
its maximum at p or the Σai′ cannot be optimal if ai′ is small enough. �
Note added in proof

Two month after the submission of this paper, the authors became aware of a paper by Mondino and Rivière [13].
As a special case of their results, Mondino and Rivière also obtain the existence and regularity of smooth minimizers
of W(f ) with fixed small area.
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Appendix A. Complete surfaces of Willmore type in Riemannian manifolds

In this section we use the methods developed in [5] to classify complete surfaces of Willmore type with positive
mean curvature in Riemannian manifolds.

We start by recalling the Gauss equation

ΣSc = Sc−2 Ric(ν, ν) + 1

2
H 2 − |Å|2 (A.1)

and the Euler–Lagrange equation satisfied by surfaces of Willmore type

�H + H |Å|2 + H Ric(ν, ν) + λH = 0. (A.2)

Here λ ∈R is the Lagrange multiplier. Letting f ∈ C1
c (Σ) and multiplying (A.2) with f 2H−1 we get after integrating

by parts∫
Σ

f 2(|Å|2 + Ric(ν, ν) + λ + |∇ logH |2)dμ = 2
∫
Σ

f 〈∇f,∇ logH 〉dμ.

Using Young’s inequality we conclude∫
Σ

f 2(|Å|2 + Ric(ν, ν) + λ
)

dμ �
∫
Σ

|∇f |2 dμ.

Replacing the Ricci curvature on the left hand side by inserting (A.1) we finally get the following lemma.

Lemma A.1. Let Σ be a surface of Willmore type with positive mean curvature. Then we have for any f ∈ C1
c (Σ)∫

Σ

f 2
(

1

2
|Å|2 + 1

4
H 2 + 1

2
Sc−1

2
ΣSc + λ

)
dμ �

∫
Σ

|∇f |2 dμ. (A.3)

In particular, if λ� − 1
2 Sc we have∫

Σ

f 2
(

1

2
|Å|2 + 1

4
H 2 − 1

2
ΣSc

)
dμ �

∫
Σ

|∇f |2 dμ. (A.4)
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These inequalities are similar to the stability inequality for minimal surfaces. Indeed they allow us to classify
surfaces of Willmore type with positive mean curvature. We directly get the following corollary:

Corollary A.2. Let Σ ⊂ M be a compact surface of Willmore type with positive mean curvature and let λ � − 1
2 Sc.

Then Σ is a topological sphere.

Proof. In this situation we can insert f ≡ 1 into (A.4) and with the help of the Gauss–Bonnet theorem we get

0 �
∫
Σ

1

2
|Å|2 + 1

4
H 2 dμ � 4π

(
1 − q(Σ)

)
, (A.5)

where q(Σ) is the genus of Σ . But if Σ is a torus then we conclude from the above inequality that H ≡ 0 which
contradicts the assumption of the corollary. This finishes the proof. �
Lemma A.3. Let Σ ⊂ M be a non-compact, complete surface of Willmore type with positive mean curvature and let
λ � − 1

2 Sc. Then Σ is either conformally equivalent to the plane or to a cylinder. In the latter case Σ has infinite
absolute total curvature.

Proof. We follow closely the proof of Theorem 3 in [5]. Assume that the universal covering space of Σ is B1(0).
Defining q = 1

2
Σ Sc − 1

2 |Å|2 − 1
4H 2 and using (A.4) we see that we can apply Lemma 1 of [5] and we get a positive

solution g on Σ of the equation

�g − 1

2
ΣScg +

(
1

2
|Å|2 + 1

4
H 2

)
g = 0.

This solution can be lifted to B1(0) and by Corollary 3 in [5] this is a contradiction since 1
2

Σ Sc = K and 1
2 |Å|2 +

1
4H 2 � 0.

Hence the covering space of Σ is C and this shows that Σ is either a plane or a cylinder. If Σ is a cylinder with
finite absolute total curvature, then we can continue arguing as in Theorem 3 of [5] and we conclude∫

Σ

|Å|2 + 1

2
H 2 dμ�

∫
Σ

ΣSc dμ � 0.

This contradicts the assumption H > 0 and finishes the proof of the lemma. �
For M =R

3 and λ = 0 we have the following theorem.

Theorem A.4. Let Σ ⊂R
3 be a complete Willmore surface with positive mean curvature. Then Σ is a round sphere.

Proof. Combining Corollary A.2 and Lemma A.3 we conclude that Σ is either a topological sphere or its universal
cover is C. If Σ is a topological sphere we conclude from (A.5) that∫

Σ

|Å|2 + 1

2
H 2 dμ� 8π.

Since on the other hand
∫
Σ

1
2H 2 dμ� 8π for all closed surfaces Σ ⊂R

3 we find that Σ is umbilic and hence a round
sphere.

Next we rule out the case that the universal cover of Σ is C. The Gauss equation (A.1) yields that

1

2
ΣSc = 1

4
H 2 − 1

2
|Å|2.

Inserting this into (A.4) we have for every f ∈ C1
c (Σ)∫

f 2|Å|2 dμ �
∫

|∇f |2 dμ.
Σ Σ
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Hence, defining q = −|Å|2, we can apply Theorem 1 of [5] and get a positive solution g of

�g + |Å|2g = 0

on Σ and by lifting also on C. Hence we have a positive super-harmonic function g on C which must be constant.
This implies that Å ≡ 0 and therefore Σ is a flat plane, which contradicts our assumptions. �
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