@article{AIHPC_2009__26_5_1607_0, author = {Dong, Hongjie and Pavlovi\'c, Nata\v{s}A}, title = {A {Regularity} {Criterion} for the {Dissipative} {Quasi-Geostrophic} {Equations}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1607--1619}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2008.08.001}, mrnumber = {2566702}, zbl = {1176.35133}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/} }
TY - JOUR AU - Dong, Hongjie AU - Pavlović, NatašA TI - A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1607 EP - 1619 VL - 26 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/ DO - 10.1016/j.anihpc.2008.08.001 LA - en ID - AIHPC_2009__26_5_1607_0 ER -
%0 Journal Article %A Dong, Hongjie %A Pavlović, NatašA %T A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1607-1619 %V 26 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/ %R 10.1016/j.anihpc.2008.08.001 %G en %F AIHPC_2009__26_5_1607_0
Dong, Hongjie; Pavlović, NatašA. A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1607-1619. doi : 10.1016/j.anihpc.2008.08.001. http://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/
[1] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, preprint.
[2] The Quasi-Geostrophic Equation in the Triebel-Lizorkin Spaces, Nonlinearity 16 (2) (2003) 479-495. | MR | Zbl
,[3] On the Regularity Conditions for the Dissipative Quasi-Geostrophic Equations, SIAM J. Math. Anal. 37 (5) (2006) 1649-1656. | MR | Zbl
,[4] Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations, Commun. Math. Phys. 233 (2003) 297-311. | MR | Zbl
, ,[5] Théorèmes D'unicité Pour Le Système De Navier-Stokes Tridimensionnel, J. Anal. Math. 77 (1999) 27-50, (in French). | MR | Zbl
,[6] A New Bernstein's Inequality and the 2D Dissipative Quasi-Geostrophic Equation, Commun. Math. Phys. 271 (3) (2007) 821-838. | MR | Zbl
, , ,[7] On the Regularity of Weak Solutions of the 3D Navier-Stokes Equations in , preprint, arXiv: math.AP/0708.3067. | MR
, ,[8] On the Critical Dissipative Quasi-Geostrophic Equation, Indiana Univ. Math. J. 50 (2001) 97-107. | MR | Zbl
, , ,[9] Formation of Strong Fronts in the 2-D Quasigeostrophic Thermal Active Scalar, Nonlinearity 7 (6) (1994) 1495-1533. | MR | Zbl
, , ,[10] Behavior of Solutions of 2D Quasi-Geostrophic Equations, SIAM J. Math. Anal. 30 (1999) 937-948. | MR | Zbl
, ,[11] P. Constantin, J. Wu, Hölder continuity of solutions of super-critical dissipative hydrodynamic transport equations, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.002. | Numdam | Zbl
[12] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.001. | Numdam | Zbl
[13] Density-Dependent Incompressible Viscous Fluids in Critical Spaces, Proc. Roy. Soc. Edinburgh Sect. A 133 (6) (2003) 1311-1334. | MR | Zbl
,[14] A Remark on Regularity Criterion for the Dissipative Quasi-Geostrophic Equations, J. Math. Anal. Appl. (2007) 1212-1217. | MR | Zbl
, ,[15] H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, 2007, submitted for publication.
[16] Global Well-Posedness and a Decay Estimate for the Critical Dissipative Quasi-Geostrophic Equation in the Whole Space, Discrete Contin. Dyn. Syst. 21 (4) (2008) 1095-1101. | MR | Zbl
, ,[17] H. Dong, D. Li, On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces, 2007, submitted for publication.
[18] -Solutions of the Navier-Stokes Equations and Backward Uniqueness, Russian Math. Surveys 58 (2003). | MR | Zbl
, , ,[19] Solutions for Semilinear Parabolic Equations in and Regularity of Weak Solutions of the Navier-Stokes System, J. Differential Equations 61 (1986) 186-212. | MR | Zbl
,[20] Global Solutions of the Super-Critical 2D Quasi-Geostrophic Equation in Besov Spaces, Adv. Math. 214 (2) (2007) 618-638. | MR | Zbl
, ,[21] The Maximum Principle and the Global Attractor for the Dissipative 2D Quasi-Geostrophic Equations, Commun. Math. Phys. 255 (1) (2005) 161-181. | MR | Zbl
,[22] Global Well-Posedness for the Critical 2D Dissipative Quasi-Geostrophic Equation, Invent. Math. 167 (3) (2007) 445-453. | MR | Zbl
, , ,[23] On Uniqueness and Smoothness of Generalized Solutions to the Navier-Stokes Equations, Zapiski Nauchn. Seminar. POMI 5 (1967) 169-185. | MR | Zbl
,[24] Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space, Commun. Math. Phys. 267 (1) (2006) 141-157. | MR | Zbl
,[25] Geophysical Fluid Dynamics, Springer, New York, 1987. | Zbl
,[26] Un Teorema Di Unicità Per El Equazioni Di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959) 173-182. | MR | Zbl
,[27] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.
[28] On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations, Arch. Ration. Mech. Anal. 9 (1962) 187-195. | MR | Zbl
,[29] Global Solutions of the 2D Dissipative Quasi-Geostrophic Equations in Besov Spaces, SIAM J. Math. Anal. 36 (3) (2004/2005) 1014-1030, (electronic). | MR | Zbl
,[30] Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces, Commun. Math. Phys. 263 (3) (2006) 803-831. | MR | Zbl
,[31] Existence and Uniqueness Results for the 2-D Dissipative Quasi-Geostrophic Equation, Nonlinear Anal. 67 (2007) 3013-3036. | MR | Zbl
,Cité par Sources :