@article{AIHPC_2008__25_6_1073_0, author = {D'Apice, Ciro and De Maio, Umberto and Kogut, Peter I.}, title = {Suboptimal boundary controls for elliptic equation in critically perforated domain}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1073--1101}, publisher = {Elsevier}, volume = {25}, number = {6}, year = {2008}, doi = {10.1016/j.anihpc.2007.07.001}, mrnumber = {2466322}, zbl = {1170.35015}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.001/} }
TY - JOUR AU - D'Apice, Ciro AU - De Maio, Umberto AU - Kogut, Peter I. TI - Suboptimal boundary controls for elliptic equation in critically perforated domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 1073 EP - 1101 VL - 25 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.001/ DO - 10.1016/j.anihpc.2007.07.001 LA - en ID - AIHPC_2008__25_6_1073_0 ER -
%0 Journal Article %A D'Apice, Ciro %A De Maio, Umberto %A Kogut, Peter I. %T Suboptimal boundary controls for elliptic equation in critically perforated domain %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 1073-1101 %V 25 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.001/ %R 10.1016/j.anihpc.2007.07.001 %G en %F AIHPC_2008__25_6_1073_0
D'Apice, Ciro; De Maio, Umberto; Kogut, Peter I. Suboptimal boundary controls for elliptic equation in critically perforated domain. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 6, pp. 1073-1101. doi : 10.1016/j.anihpc.2007.07.001. http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.001/
[1] Homogenization of thin structures by two-scale method with respect to measures, SIAM J. Math. Anal. 32 (6) (2001) 1198-1226. | MR | Zbl
, ,[2] G. Buttazzo, Γ-convergence and its applications to some problem in the calculus of variations, in: School on Homogenization, ICTP, Trieste, September 6-17, 1993, 1994, pp. 38-61.
[3] Γ-convergence and optimal control problems, J. Optim. Theory Appl. 32 (1982) 385-407. | MR | Zbl
, ,[4] Unbounded Functionals in the Calculus of Variations. Representation, Relaxation, and Homogenization, Chapman and Hall/CRC, New York, 2002. | MR | Zbl
, ,[5] Homogenization in perforated domains with mixed conditions, Nonlinear Diff. Equ. Appl. 9 (2002) 246-325. | MR | Zbl
, , ,[6] Existence of a sequence satisfying Cioranescu-Murat conditions in homogenization of Dirichlet problems in perforated domains, Rend. Mat. Appl. (7) 16 (1996) 387-413. | MR | Zbl
,[7] Homogenization and correctors for the wave equation in domains with small holes, Ann. Sc. Norm. Super. Pisa, Sc. Fis. Mat. 17 (4) (1991) 251-293. | Numdam | MR | Zbl
, , , ,[8] Exact boundary controllability for the wave equation in domains with small holes, J. Math. Pures Appl. 71 (1992) 343-377. | MR | Zbl
, , ,[9] Un terme étrage venu d'ailleurs, in: Nonlinear Partial Differential Equations and their applications. Collége de France Seminar, Research Notes in Mathematics, Pitman, London, 1981, vol. II, pp. 58-138, vol. III, pp. 157-178. | Zbl
, ,[10] Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (1978) 590-607. | MR | Zbl
, ,[11] Nonhomogeneous Neumann problems in domains with small holes, Modélisation Mathématique et Analyse Numérique 22 (4) (1988) 561-608. | Numdam | MR | Zbl
, ,[12] A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes, Asymptodic Anal. 31 (2002) 297-316. | MR | Zbl
, , ,[13] Exact boundary controllability of a nonlinear KdV equation with critical length, J. Eur. Math. Soc. (JEMS) 6 (3) (2004) 367-398. | MR | Zbl
, ,[14] Asymptotic behaviour and correctors for Dirichlet problem in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 24 (4) (1997) 239-290. | Numdam | MR | Zbl
, ,[15] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992. | MR | Zbl
, ,[16] Optimal Control of Distributed Systems. Theory and Applications, Amer. Math. Soc., 2000. | MR | Zbl
,[17] Theory of Extremal Problems, Nauka, Moskow, 1974, (in Russian). | MR
, ,[18] Optimal control on perforated domains, J. Math. Anal. Appl. 229 (1999) 563-586. | MR | Zbl
, ,[19] S-convergence in homogenization theory of optimal control problems, Ukrain. Mat. Zh. 49 (11) (1997) 1488-1498, (in Russian); English transl. in:, Ukrainian Math. J. 49 (11) (1997) 1671-1682. | MR | Zbl
,[20] On S-homogenization of an optimal control problem with control and state constraints, J. Anal. Appl. 20 (2) (2001) 395-429. | MR | Zbl
, ,[21] Équations différentielles opérationnelles, Springer-Verlag, Berlin, 1961. | MR | Zbl
,[22] Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971. | MR | Zbl
,[23] Boundary Value Problems in Domain with Fine-Grained Boundary, Naukova Dumka, Kyiv, 1974. | Zbl
, ,[24] Convergence of the boundary control for the wave equation in domains with holes of critical size, Electron. J. Differential Equations 2002 (35) (2002) 1-10. | MR | Zbl
,[25] On the convergence of hyperbolic semigroups in variable Hilbert spaces, J. Math. Sci. 127 (5) (2005) 2263-2283. | MR | Zbl
,[26] Optimal control and “strange term” for the Stokes problem in perforated domains, Portugal. Math. 59 (2) (2002) 161-178. | MR | Zbl
, ,[27] Averaging nonlinear Dirichlet problems in domains with channels, Soviet Math. Dokl. 42 (1991) 853-857. | MR | Zbl
,[28] On an extension of the method of two-scale convergence and its applications, Sbornik Math. 191 (7) (2000) 973-1014. | MR | Zbl
,[29] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. | MR | Zbl
, , ,Cité par Sources :