@article{AIHPC_2005__22_3_259_0, author = {Bartsch, Thomas and Weth, Tobias}, title = {Three nodal solutions of singularly perturbed elliptic equations on domains without topology}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {259--281}, publisher = {Elsevier}, volume = {22}, number = {3}, year = {2005}, doi = {10.1016/j.anihpc.2004.07.005}, mrnumber = {2136244}, zbl = {02192472}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.005/} }
TY - JOUR AU - Bartsch, Thomas AU - Weth, Tobias TI - Three nodal solutions of singularly perturbed elliptic equations on domains without topology JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 259 EP - 281 VL - 22 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.005/ DO - 10.1016/j.anihpc.2004.07.005 LA - en ID - AIHPC_2005__22_3_259_0 ER -
%0 Journal Article %A Bartsch, Thomas %A Weth, Tobias %T Three nodal solutions of singularly perturbed elliptic equations on domains without topology %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 259-281 %V 22 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.005/ %R 10.1016/j.anihpc.2004.07.005 %G en %F AIHPC_2005__22_3_259_0
Bartsch, Thomas; Weth, Tobias. Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 3, pp. 259-281. doi : 10.1016/j.anihpc.2004.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.005/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. | MR | Zbl
, ,[2] Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001) 117-152. | MR | Zbl
,[3] On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z. 233 (2000) 655-677. | MR | Zbl
, , ,[4] Sign changing solutions to superlinear Schrödinger equations, Comm. Partial Differential Equations 29 (2004) 25-42. | MR | Zbl
, , ,[5] On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996) 115-131. | MR | Zbl
, ,[6] A note on additional properties of sign changing solutions to superlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 22 (2003) 1-14. | MR | Zbl
, ,[7] Positive solutions of semilinear elliptic problems in exterior domains, Arch. Rational Mech. Anal. 99 (1987) 283-300. | MR | Zbl
, ,[8] Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. 2 (1994) 29-48. | MR | Zbl
, ,[9] Multi-peak solutions for a singularly perturbed semilinear elliptic problem, J. Differential Equations 166 (2000) 266-289. | MR | Zbl
, ,[10] A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997) 1041-1053. | MR | Zbl
, , ,[11] A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic BVPs, Electronic J. Differential Equations 2 (1998) 18. | Zbl
, , ,[12] Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific, River Edge, NJ, 1999. | MR | Zbl
,[13] Infinite Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl., vol. 6, Birkhäuser, Boston, 1993. | MR | Zbl
,[14] Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 871-888. | Numdam | MR | Zbl
, , ,[15] Homoclinic type solutions for a semilinear elliptic PDE on , Comm. Pure Appl. Math. XLV (1992) 1217-1269. | MR | Zbl
, ,[16] Ordinary differential equations in Banach spaces, in: Lecture Notes in Math., vol. 596, Springer, Berlin, 1978. | MR | Zbl
,[17] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209-243. | MR | Zbl
, , ,[18] Mountain pass theorems in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math. 81 (2000) 373-396. | MR | Zbl
, ,[19] Lusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc. 354 (2002) 3207-3227. | MR | Zbl
, ,[20] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | MR | Zbl
, ,[21] Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982) 315-334. | MR | Zbl
,[22] The concentration-compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. | Numdam | MR | Zbl
,[23] On the number of nodal domains for eigenfunctions of elliptic differential operators, J. London Math. Soc. (2) 31 (1985) 91-100. | MR | Zbl
,[24] Multiple solutions of differential equations without the Palais-Smale condition, Math. Ann. 261 (1982) 399-412. | MR | Zbl
,[25] Variational Methods, Springer, Berlin, 1990. | MR | Zbl
,[26] On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 43-57. | Numdam | MR | Zbl
,Cité par Sources :