@article{AIHPC_2002__19_6_903_0, author = {Dolbeault, Jean and Monneau, R\'egis}, title = {Convexity estimates for nonlinear elliptic equations and application to free boundary problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {903--926}, publisher = {Elsevier}, volume = {19}, number = {6}, year = {2002}, mrnumber = {1939090}, zbl = {1034.35047}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2002__19_6_903_0/} }
TY - JOUR AU - Dolbeault, Jean AU - Monneau, Régis TI - Convexity estimates for nonlinear elliptic equations and application to free boundary problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 903 EP - 926 VL - 19 IS - 6 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2002__19_6_903_0/ LA - en ID - AIHPC_2002__19_6_903_0 ER -
%0 Journal Article %A Dolbeault, Jean %A Monneau, Régis %T Convexity estimates for nonlinear elliptic equations and application to free boundary problems %J Annales de l'I.H.P. Analyse non linéaire %D 2002 %P 903-926 %V 19 %N 6 %I Elsevier %U http://www.numdam.org/item/AIHPC_2002__19_6_903_0/ %G en %F AIHPC_2002__19_6_903_0
Dolbeault, Jean; Monneau, Régis. Convexity estimates for nonlinear elliptic equations and application to free boundary problems. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 6, pp. 903-926. http://www.numdam.org/item/AIHPC_2002__19_6_903_0/
[1] A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math. 368 (1986) 63-107. | MR | Zbl
, ,[2] Distribution of vortices in a type II superconductor as a free boundary problem: Existence and regularity via Nash-Moser theory, Interfaces and Free Boundaries 2 (2000) 181-200. | MR | Zbl
, ,[3] The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (9) (1974) 831-844. | MR | Zbl
, ,[4] Compactness method in free boundary problems, Comm. P.D.E. 5 (4) (1980) 427-448. | MR | Zbl
,[5] Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa, serie IV 3 (1975) 289-310. | Numdam | MR | Zbl
, ,[6] Solutions of fully nonlinear elliptic equations with patches of zero gradient: existence, regularity and convexity of level curves, Trans. Amer. Math. Soc. 354 (8) (2002) 3095-3115. | MR | Zbl
, ,[7] Convexity properties of solutions to some classical variational problems, Comm. P.D.E. 7 (11) (1982) 1337-1379. | MR | Zbl
, ,[8] On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings, J. Math. Anal. Appl. 177 (1993) 263-286. | MR | Zbl
, ,[9] Analyse Complexe, Collection Maîtrise de Mathematiques Pures, Masson, 1990. | MR | Zbl
,[10] Estimations de convexité pour des équations elliptiques non-linéaires et application à des problèmes de frontière libre [Convexity estimates for nonlinear elliptic equations and application to free boundary problems], C. R. Acad. Sci. Paris Sér. I 331 (2000) 771-776. | MR | Zbl
, ,[11] On the regularity of the solution of a second order variational inequality, Boll. U.M.I. 6 (4) (1972) 312-315. | MR | Zbl
,[12] Variational Principles and Free Boundary Problems, Pure and Applied Mathematics, Wiley-Interscience, 1982. | MR | Zbl
,[13] The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc. 282 (1984) 153-182. | MR | Zbl
, ,[14] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982) 65-222. | MR | Zbl
,[15] Convexity of free boundaries with Bernoulli type boundary conditions, Nonlinear Analysis T.M.A. 28 (5) (1997). | MR | Zbl
, ,[16] Existence of classical solutions to a free boundary problem for the p-Laplace operator: (I) the exterior convex case, J. Reine Angew. Math. 521 (2000) 85-97. | MR | Zbl
, ,[17] Existence of classical solutions to a free boundary problem for the p-Laplace operator: (II) the interior convex case, Indiana Univ. Math. J. 49 (1) (2000) 311-323. | MR | Zbl
, ,[18] Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, 1983. | MR | Zbl
, ,[19] When are solutions to nonlinear elliptic boundary value problems convex?, Comm. P.D.E. 10 (1985) 1213-1225. | MR | Zbl
,[20] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., 1150, Springer, 1985. | MR | Zbl
,[21] On the convexity and symmetry of solutions to an elliptic free boundary problem, J. Austral. Math. Soc. (Series A) 42 (1987) 57-68. | MR | Zbl
,[22] On the convexity of level sets for elliptic and parabolic exterior boundary value problems, in: Potential Theory, Prague, 1987, Plenum, New York, 1988, pp. 153-159. | MR | Zbl
,[23] Regularity in free boundary problems, Bull. Amer. Math. Soc. 7 (1982) 65-222.
, ,[24] An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. | MR | Zbl
, ,[25] Existence of regular solutions with levels for semilinear elliptic equations with nonmonotone L1 nonlinearities, Indiana Univ. Math. J. 39 (4) (1990) 1081-1114. | MR | Zbl
, ,[26] R. Monneau, Problèmes de frontières libres, EDP elliptiques non linéaires et applications en combustion, supraconductivité et élasticité, Thèse de doctorat de l'Université de Paris VI, 1999.
[27] Multiple Integrals in the Calculus of Variations, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, 130, Springer-Verlag, New York, 1966. | MR | Zbl
,[28] Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987. | MR | Zbl
,[29] One-sided estimates for the curvature of the free boundary in the obstacle problem, Adv. in Math. 24 (1977) 78-98. | MR | Zbl
,[30] Some estimates of solutions to Monge-Ampère type equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV. Ser. 8 (1981) 183-230. | Numdam | MR | Zbl
,