Some estimates of solutions to Monge-Ampère type equations in dimension two
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 8 (1981) no. 2, pp. 183-230.
@article{ASNSP_1981_4_8_2_183_0,
     author = {Talenti, Giorgio},
     title = {Some estimates of solutions to {Monge-Amp\`ere} type equations in dimension two},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {183--230},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 8},
     number = {2},
     year = {1981},
     mrnumber = {623935},
     zbl = {0467.35044},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1981_4_8_2_183_0/}
}
TY  - JOUR
AU  - Talenti, Giorgio
TI  - Some estimates of solutions to Monge-Ampère type equations in dimension two
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1981
SP  - 183
EP  - 230
VL  - 8
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1981_4_8_2_183_0/
LA  - en
ID  - ASNSP_1981_4_8_2_183_0
ER  - 
%0 Journal Article
%A Talenti, Giorgio
%T Some estimates of solutions to Monge-Ampère type equations in dimension two
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1981
%P 183-230
%V 8
%N 2
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1981_4_8_2_183_0/
%G en
%F ASNSP_1981_4_8_2_183_0
Talenti, Giorgio. Some estimates of solutions to Monge-Ampère type equations in dimension two. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 8 (1981) no. 2, pp. 183-230. http://www.numdam.org/item/ASNSP_1981_4_8_2_183_0/

[1] A.D. Aleksandrov, Dirichlet's problem for the equation Det ∥zij∥ = ϕ, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom., 13 (1958). | Zbl

[2] A.M. Ampère, Mémoire contenant l'application de la théorie ..., Journal de l'École Polytechnique (1820).

[3] I . Ya. Bakel'Man, Generalized solutions of Monge-Ampère equations, Dokl. Akad. Nauk SSSR, 114 (1957). | MR | Zbl

[4] I. Ya. Bakel'Man, On the theory of Monge-Ampère's equations, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom., 13 (1958). | MR | Zbl

[5] I . Ya. Bakel'Man, The Dirichlet problem for equations of Monge-Ampère type and their n-dimensionat analogues, Dokl. Akad. Nauk SSSR, 126 (1959). | MR | Zbl

[6] I. Ya. Bakel'Man, On the stability of Monge-Ampère equations of elliptic type, Uspehi Mat. Nauk, 15 (1960). | MR | Zbl

[7] I. Ya. Bakel'Man, Variational problems connected with Monge-Ampère equation, Dokl. Akad. Nauk SSSR, 141 (1961). | Zbl

[8] I. Ya. Bakel'Man, Geometric methods of solution of elliptic equations, Izdat. Nauka, Moscow (1965). | MR

[9] I. Ya. Bakel'Man, Geometric questions on quasilinear elliptic equations, Uspehi Mat. Nauk, 25 (1970). | MR | Zbl

[10] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J., 5 (1958). | MR | Zbl

[11] S.Y. Cheng - S.T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 29 (1976). | MR | Zbl

[12] S.Y. Cheng - S.T. Yau, On the regularity of the Monge-Ampère equation det (... ) = F(x, u), Comm. Pure Appl. Math., 30 (1977). | MR | Zbl

[13] H. Flanders, On certain functions with positive definite hessian, Ann. of Math., 71 (1960). | MR | Zbl

[14] P.P. Gillis, Equations de Monge-Ampère et problèmes de calcul de variations . III Congrès National des Sciences, Bruxelles (1950).

[15] P.P. Gillis, Équations de Monge-Ampère à 4 variables, Acad. Roy. Bel. Bull. Cl. Sci., (5) 36 (1950). | MR | Zbl

[16] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Herman, Paris (1896). | JFM

[17] E. Goursat, Cours d'analyse mathématique, Gauthier-Villars, Paris, (1956).

[18] E. Heinz, Über gewisse elliptische Systeme von Differentialgleichungen zweiter Ordnung mit Anwendung auf die Monge-Ampère'sche Gleichung, Math. Ann., 131 (1956). | MR | Zbl

[19] E. Heinz, On elliptic Monge-Ampère equations and Weyl's embedding problem, Journal d'Analyse, 7 (1959-60). | MR | Zbl

[20] E. Heinz, Interior estimates for solutions of elliptic Monge-Ampère equations, Proc. Symposia Pure Math. 4, A.M.S. (1961). | MR | Zbl

[21] A.V. Ivanov, A priori estimates for solutions of nonlinear elliptic second order equations, Problems of Math. Phys. and questions from the theory of functions, O. A. Layzhenskaja ed., Izdat. Nauka, Leningrad (1976).

[22] K. Jörgens, Über die Lösungen der Differentialgleichung rt - S2 = 1, Math. Ann., 127 (1954). | MR

[23] K. Jörgens, Harmonische Abbildungen und die Differentialgleichung rt - s2 = 1 Math. Ann., 129 (1955). | MR | Zbl

[24] H. Lewy, A priori limitations for solutions of Monge-Ampère equations, I and I I, Trans. Amer. Math. Soc., 37 (1935), and 41 (1937). | JFM | MR

[25] H. Lewy, On differential geometry in the large (Minkowki's problem), Trans. Amer. Math. Soc., 43 (1938). | JFM | Zbl

[26] H. Lewy, On the existence of a closed surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci. USA 24, No. 2 (1938). | JFM | Zbl

[27] G. Monge, Sur le calcul intégral des équations aux differences partielles, Mémoires de l'Académie des Sciences, Paris (1784).

[28] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953). | MR | Zbl

[29] L. Nirenberg, Monge-Ampère equations and some associated problems in geometry, Proc. International Congress of Math., Vancouver (1974). | MR | Zbl

[30] A.V. Pogorelov, The regularity of a convex surface with a given Gauss curvature, Russian Math. Sbornik NS, 31 (1952). | MR

[31] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Noordhoff, Groningen (1964). | MR | Zbl

[32] A.V. Pogorelov, On a regular solution of the n-dimensional Minkowski problem, Dokl. Akad. Nauk SSSR, 199 (1971). | Zbl

[33] A.V. Pogorelov, On the regularity of generalized solutions of the equation det (...) = ϕ( ... ) > 0, Dokl. Akad. Nauk SSSR, 200 (1971).

[34] A.V. Pogorelov, The Dirichlet problem for the multidimensional analogue-of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR, 201 (1971). | MR | Zbl

[35] A.V. Pogorelov, Extrinsic geometry of convex surfaces, Amer. Math. Soc., Providence (1973). | MR | Zbl

[36] A.V. Pogorelov, The Minkowski multidimensional problem, Winston and Sons, Halsted Press (1978). | MR | Zbl

[37] I.V. Skrypnik - A.E. Shishkov, On sotution of the Dirichlet problem for Monge-Ampère equations, Dokl. Akad. Nauk Ukrain. SSR, ser. A, No. 3 (1978).

[38] A.E. Shishkov, Existence of solutions that are regular up to the boundary of the domain of the Dirichlet problem for strongly elliptic Monge-Ampère equations, Dokl. Akad. Nauk Ukrain. SSR, ser. A, No. 1 (1978). | MR | Zbl

[39] W. Von Wahl, Über die Hölderstetigkeit der zweiten Ableitungen der Lösungen nichtlinearer elliptischer Gleichungen, Math. Z., 136 (1974). | MR | Zbl

[40] A.D. Aleksandrov, The method of normal maps in uniqueness problems and estimations for elliptic equations, Sem. Ist. Naz. Alta Mat. (1962/63), editrice Oderisi, Gubbio (1965). | MR

[41] A. Alvino - G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri, Ricerche Mat., 27 (1978). | MR | Zbl

[42] A. Alvino - G. Trombetti, Equazioni ellittiche con termini di ordine inferiore e riordinamenti, Rend. Acc. Naz. Lincei, ser. III, vol. 66 (1979). | Zbl

[43] L. Bianchi, Lezioni di geometria differenziale, vol. 1, parte 1, Bologna, editore Zanichelli (1927). | JFM

[44] T. Bonnesen - W. Fenchel, Theorie der Konvexen Korper, Chelsea, New York (1948). | Zbl

[45] G. Chiti, Norme di Orlicz delle soluzioni di una classe di equazioni ellittiche, Boll. Un. Mat. Ital., (5) 16A (1979). | Zbl

[46] M. D, Differential geometry of curves and surfaces, Prentice Hall (1976). | MR | Zbl

[47] N.V. Efimov, Flachenverbiegung im grossen, Akademie Verlag, Berlin (1957). | MR | Zbl

[48] H.G. Eggleston, Convexity, Cambridge Univ. Press (1958). | Zbl

[49] H. Federer: Curvature measnres, Trans. Amer. Math. Soc., 93 (1959). | Zbl

[50] M.L. Gerver, Metric properties of harmonic functions, Dokl. Akad. Nauk SSSR, 166 (1966). | Zbl

[51] H.J. Greenberg - W.P. Pierskalla, A review of quasi-convex functions, Operations Research, 19 (1971). | Zbl

[52] Hardy - Littlewood - Pòlya, Inequalities, Cambridge Univ. Press (1964). | Zbl

[53] D.I. Kristev, A metric property of the solutions of an elliptic equation in the plane, Vestnik Moskov. Univ. Ser. I Mat. Meh., 31 (1976). | Zbl

[54] D. Laugwitz, Differential and Riemannian geometry, Academic Press (1965). | Zbl

[55] M. Longinetti, Funzioni quasi convesse, Tesi di laurea, Università di Firenze-(1979).

[56a] W.A. Luxemburg - A.C. Zaanen, Notes on Banach function spaces I... XIII, Indag. Math., 25 (1963); 26 (1964).

[56b] W.A. Luxemburg, Notes on Banach function spaces XIV ... XVI, Indag. Math., 27 (1965).

[57] C. Maderna - S. Salsa, Symmetrization in Neuman problems, Applicable Analysis, 9 (1979). | Zbl

[58] L. Nirenberg, Elementary remarks on surfaces with curvature of fixed sign, Proc. Symposia Pure Math., vol. 3, A.M.S. (1961). | Zbl

[59] G.O. Okikiolu, Aspects of the theory of bounded integral operators in Lp spaces, Academic Press (1971). | Zbl

[60] R. O'Neil, Integral transforms and tensor products on Orlicz spaces and L(p, q) spaces, J. Analyse Math., 21 (1968). | Zbl

[61] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc., 84 (1978). | Zbl

[62] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl., 74 (1966). | MR | Zbl

[63] G. Talenti, Sugli invarianti della matrice hessiana, Boll. Un. Mat. Ital., 20 (1965). | MR | Zbl

[64] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa, (4) 3 (1976). | Numdam | MR | Zbl

[65] G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., 120 (1979). | MR | Zbl