@article{ASNSP_1997_4_25_1-2_69_0, author = {Berestycki, Henri and Caffarelli, Luis and Nirenberg, Louis}, title = {Further qualitative properties for elliptic equations in unbounded domains}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {69--94}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 25}, number = {1-2}, year = {1997}, mrnumber = {1655510}, zbl = {1079.35513}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1997_4_25_1-2_69_0/} }
TY - JOUR AU - Berestycki, Henri AU - Caffarelli, Luis AU - Nirenberg, Louis TI - Further qualitative properties for elliptic equations in unbounded domains JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 69 EP - 94 VL - 25 IS - 1-2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1997_4_25_1-2_69_0/ LA - en ID - ASNSP_1997_4_25_1-2_69_0 ER -
%0 Journal Article %A Berestycki, Henri %A Caffarelli, Luis %A Nirenberg, Louis %T Further qualitative properties for elliptic equations in unbounded domains %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 69-94 %V 25 %N 1-2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1997_4_25_1-2_69_0/ %G en %F ASNSP_1997_4_25_1-2_69_0
Berestycki, Henri; Caffarelli, Luis; Nirenberg, Louis. Further qualitative properties for elliptic equations in unbounded domains. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 1-2, pp. 69-94. http://www.numdam.org/item/ASNSP_1997_4_25_1-2_69_0/
[1] Uniqueness of the solution of a semilinear boundary value problem, Math. Ann. 272 (1985), 129-138. | MR | Zbl
,[2] On the method of moving planes and the sliding method, Boletim Soc. Brasil. de Mat. Nova Ser. 22 (1991), 1-37. | MR | Zbl
- ,[3] Symmetry for Elliptic Equations in a Halfspace, in "Boundary value problems for partial differential equations and applications", volume dedicated to E. Magenes, J. L. Lions et al., ed., Masson, Paris (1993), 27-42. | MR | Zbl
- - ,[4] Monotonicity for elliptic equations in an unbounded Lipschitz domain, Comm. Pure Appl. Math. 50 (1997), 1089-1112. | MR | Zbl
- - ,[5] Inequalities for second order elliptic equations with applications to unbounded domains I, Duke Math. J. 81 (1996), 467-494. | MR | Zbl
- - ,[6] The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Applied Math. 47 (1994), 47-92. | MR | Zbl
- - ,[7] Existence Results for Bellman Equations and Maximum Principles in Unbounded Domains, preprint. | MR
,[8] A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47 (1994), 1457-1473. | MR | Zbl
- - ,[9] Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Annali di Pisa, Ser. 414 (1987), 97-121. | Numdam | MR | Zbl
- ,[10] Some notes on the method of moving planes, Bull. Australian Math. Soc. 46 (1992), 425-434. | MR | Zbl
,[11] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur. (3) 3 (1957), 25-43. | MR | Zbl
,[12] Convergence Problems for Functionals and Operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, E. De Giorgi, E. Magenes and U. Mosco eds., Pitagora Ed., Bologna (1979), 131-188 | MR | Zbl
,[13] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburgh A 93 (1982), 1-14. | MR | Zbl
- ,[14] On a Conjecture of De Giorgi and some Related Problems, preprint. | MR
- ,[15] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. | MR | Zbl
- - ,[16] Elliptic Partial Differential Equations of Second Order", 2nd ed., Springer Verlag, 1983. | MR | Zbl
- , "[17] A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math. 38 (1985), 679-684. | MR | Zbl
,[18] Some entire solutions in the plane of nonlinear Poisson equations, Bollettino U.M.I. B5-17 (1980), 614-622. | MR | Zbl
- ,[19] On Harnack's theorem for elliptic differental equations, Comm. Pure Appl. Math. 14 (1961), 577-591. | MR | Zbl
,[20] Maximum Principles in Differential Equations", Prentice-Hall, Englewood Cliffs, New Jersey, 1967. | MR | Zbl
- , "[21] Doctoral Thesis, Courant Institute, 1994.
,