@article{AIHPC_1997__14_6_787_0, author = {Buffoni, B.}, title = {Nested axi-symmetric vortex rings}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {787--797}, publisher = {Gauthier-Villars}, volume = {14}, number = {6}, year = {1997}, mrnumber = {1482902}, zbl = {0902.76019}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1997__14_6_787_0/} }
Buffoni, B. Nested axi-symmetric vortex rings. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 6, pp. 787-797. http://www.numdam.org/item/AIHPC_1997__14_6_787_0/
[1] On multibump bound states for certain semilinear elliptic equations, J. Diff. Eqns, Vol. 96, 1992, pp. 89-115. | MR | Zbl
and ,[2] Existence of steady vortex rings in an ideal fluid, Arch. Rat. Mech. Anal., Vol. 108, 1989, pp. 97-109. | MR | Zbl
and ,[3] The uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 91-119. | MR | Zbl
and ,[4] The uniqueness of a Family of Steady Vortex rings, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 207-241. | MR | Zbl
and ,[5] A global branch of steady vortex rings, J. reine angew. Math., Vol. 384, 1988, pp. 1-23. | EuDML | MR | Zbl
and ,[6] The shadowing lemma for elliptic PDE, Dynamics of Infinite Dimensional Systems, S. N. Chow and J. K. Hale eds., F37, 1987. | MR | Zbl
,[7] Nonlinearity and functional analysis, Academic Press, 1977. | MR | Zbl
,[8] Mathematical structures of nonlinear science, Kluver Academic Publishers, Dordrecht, 1990. | MR | Zbl
,[9] Homoclinic and period-doubling bifurcations for damped systems, Ann. Inst. Henri Poincaré : analyse non linéaire, Vol. 12, 1995, pp. 1-25. | EuDML | Numdam | MR | Zbl
,[10] and É. SÉRÉ, A global condition for quasi-random behaviour in a class of conservative systems, Commun. Pure Appl. Math., Vol. 49, 1996, pp. 285-305. | MR | Zbl
[11] Rearrangements of functions, maximisation of convex functionals, and vortex rings, Math. Ann., Vol. 276, 1987, pp. 225-253. | MR | Zbl
,[12] Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. Henri Poincaré: Analyse non lin., Vol. 6, 1989, pp. 295-319. | Numdam | MR | Zbl
,[13] Uniqueness for the circular vortex-pair in a uniform flow, Proceedings of the Royal Society of London Series A, Vol. 452, 1996, pp. 2343-2350. | MR | Zbl
,[14] Stability-criterion for stationary bound-states of solitons with radiationless oscillating tails, Physical Review E, Vol. 51, 1995, pp. 3572-3578.
and ,[15] Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 1217-1269. | MR | Zbl
and ,[16] Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex rings, Nonlinear Analysis TMA, Vol. 7, 1983, pp. 365-379. | MR | Zbl
,[17] Degree Theory in Analysis and Applications, Oxford University Press, 1995. | MR | Zbl
and ,[18] On steady vortex rings of small cross-section in an ideal fluid, Proc. Roy. Soc. Lon. A, Vol. 316, 1970, pp. 29-62. | Zbl
,[19] Examples of steady vortex rings of small cross-section in an ideal fluid, J. Fluid Mech., Vol. 51, 1972, pp. 119-135. | Zbl
,[20] On steady vortex rings with swirl and a Sobolev inequality, C. Bandle et al. (Editors), Progress in Partial Differential Eqns: Calculus of Variations, Applications. LONGMAN, 1992. | MR | Zbl
,[21] A global theory of steady vortex rings in an ideal fluid, Acta Math., Vol. 132, 1974, pp. 13-51. | MR | Zbl
and ,[22] Elliptic Partial Differential Equations of Second Order, Springer, 1977. | MR | Zbl
and ,[23] Hydrodynamics, Cambridge University Press, 1932. | JFM | MR
,[24] On -Δu = k(x)u5 in R3, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 303-340. | Zbl
,[25] On the existence of global vortex rings, J. d'Analyse Math., Vol. 37, 1980, pp. 208-247. | MR | Zbl
,[26] A steady vortex ring close to Hill's spherical vortex, Proc. Cambridge Philos. Soc., Vol. 72, 1972, pp. 253-284. | MR | Zbl
,[27] Exponential Dichotomies and Transversal Homoclinic Points, JDE, Vol. 55, 1984, pp. 225-256. | MR | Zbl
,[28] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, Vol. 10, 1993, pp. 561-590. | Numdam | MR | Zbl
,