Pour une classe de processus de
For a class of
@article{AIHPB_2015__51_3_1076_0, author = {Liu, Huili and Zhou, Xiaowen}, title = {Some support properties for a class of ${\varLambda }${-Fleming{\textendash}Viot} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1076--1101}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/13-AIHP598}, mrnumber = {3365973}, zbl = {1334.60182}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP598/} }
TY - JOUR AU - Liu, Huili AU - Zhou, Xiaowen TI - Some support properties for a class of ${\varLambda }$-Fleming–Viot processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1076 EP - 1101 VL - 51 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP598/ DO - 10.1214/13-AIHP598 LA - en ID - AIHPB_2015__51_3_1076_0 ER -
%0 Journal Article %A Liu, Huili %A Zhou, Xiaowen %T Some support properties for a class of ${\varLambda }$-Fleming–Viot processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1076-1101 %V 51 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP598/ %R 10.1214/13-AIHP598 %G en %F AIHPB_2015__51_3_1076_0
Liu, Huili; Zhou, Xiaowen. Some support properties for a class of ${\varLambda }$-Fleming–Viot processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1076-1101. doi : 10.1214/13-AIHP598. https://www.numdam.org/articles/10.1214/13-AIHP598/
[1] Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour XIII – 1983. Lecture Notes in Mathematics 1117 1–198. Springer, Berlin, 1985. | MR | Zbl
.
[2] The
[3] Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006) 147–181. | MR | Zbl
and .[4] Measure-valued diffusions, general coalescents and population genetic inference. In Trends in Stochastic Analysis. London Math. Soc. Lecture Note Ser. 353 329–363. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl
and .
[5]
[6] A modified lookdown construction for the Xi-Fleming–Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009) 25–61. | MR | Zbl
, , , and .[7] Measure-valued processes, self-similarity and flickering random measures. In Fractal Geometry and Stochastics IV. Progr. Probab. 61 175–196. Birkhäuser, Basel, 2009. | MR | Zbl
.[8] Infinitely divisible random measures and superprocesses, stochastic analysis and related topics. In Stochastic Analysis and Related Topics (Silivri, 1990). Progr. Probab. 31 1–129. Birkhäuser, Boston, MA, 1992. | MR | Zbl
.[9] Measure-valued Markov processes. École d’Été de Probabilités de Saint-Flour XIII – 1991. Lecture Notes in Mathematics 1541 1–260. Springer, Berlin, 1993. | MR | Zbl
.[10] Wandering random measures in the Fleming–Viot model. Ann. Appl. Probab. 10 (3) (1982) 554–580. | MR | Zbl
and .[11] High-density limits of hierarchically structured branching-diffusing populations. Stochastic Process. Appl. 62 (1996) 191–222. | DOI | MR | Zbl
, and .[12] Super-Brownian motion: Path properties and hitting probabilities. Probab. Theory Related Fields 83 (1989) 135–205. | DOI | MR | Zbl
, and .
[13] Almost-sure path properties of
[14] Path properties of superprocesses with a general branching mechanism. Ann. Appl. Probab. 27 (3) (1999) 1099–1134. | MR | Zbl
.[15] A countable representation of the Fleming–Viot measure-valued diffusion. Ann. Appl. Probab. 24 (2) (1996) 698–742. | MR | Zbl
and .[16] Genealogical processes for Fleming–Viot models with selection and recombination. Ann. Appl. Probab. 9 (4) (1999) 1091–1148. | MR | Zbl
and .[17] Particle representations for measure-valued population models. Ann. Appl. Probab. 27 (1) (1999) 166–205. | MR | Zbl
and .[18] Fleming–Viot processes in population genetics. SIAM J. Control Optim. 31 (2) (1993) 345–386. | MR | Zbl
and .[19] Some Mathematical Models from Population Genetics. Lecture Notes in Mathematics 2012. Springer, Heidelberg, 2011. | MR | Zbl
.[20] The Geometry of Fractal Sets. Cambridge Univ. Press, Cambridge, 1985. | DOI | MR | Zbl
.
[21] Compact support property of the
[22] Dawson–Watanabe superprocesses and measure-valued diffusions. In Lecture Notes in Mathematics 1781 132–318. Springer, Berlin, 1999. | MR | Zbl
.[23] Coalescents with multiple collisions. Ann. Appl. Probab. 27 (4) (1999) 1870–1902. | MR | Zbl
.[24] A new result on the support of the Fleming–Viot process, proved by nonstandard construction. Stochastics Stochastics Rep. 44 (3-4) (1993) 213–223. | MR | Zbl
.[25] Properties of superprocesses and interacting particle systems. Diploma thesis, Technische Univ. Berlin, 2009.
.[26] The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (4) (1999) 1116–1125. | MR | Zbl
.
[27] A necessary and sufficient condition for the
[28] Path properties of superprocesses. Ph.D. thesis, Univ. British Columbia, 1989. | MR | Zbl
.Cité par Sources :