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Abstract. For a class of Λ-Fleming–Viot processes with underlying Brownian motion whose associated Λ-coalescents come down
from infinity, we prove a one-sided modulus of continuity result for their ancestry processes recovered from the lookdown con-
struction of Donnelly and Kurtz. As applications, we first show that such a Λ-Fleming–Viot support process has one-sided modulus
of continuity (with modulus function C

√
t log(1/t)) at any fixed time. We also show that the support is compact simultaneously at

all positive times, and given the initial compactness, its range is uniformly compact over any finite time interval. In addition, under
a mild condition on the Λ-coalescence rates, we find a uniform upper bound on Hausdorff dimension of the support and an upper
bound on Hausdorff dimension of the range.

Résumé. Pour une classe de processus de Λ-Fleming–Viot avec dynamique brownienne sous-jacente dont les Λ-coalescents as-
sociés descendent de l’infini, nous obtenons une borne supérieure sur le module de continuité des processus ancestraux définis par
la construction look-down de Donnelly et Kurtz. Comme applications, nous obtenons que le module de continuité du processus Λ-
Fleming–Viot est majoré à tout temps positif t par la fonction C

√
t log(1/t). Nous montrons aussi que le support est simultanément

compact pour tout temps positif, et, en cas de compacité au temps initial, l’image est uniformément compacte sur tout intervalle de
temps fini. En plus, sous une condition faible sur les taux de Λ-coalescence, nous obtenons une borne supérieure uniforme sur la
dimension de Hausdorff du support et de l’image.
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1. Introduction

Fleming–Viot process arises as a probability-measure-valued stochastic process on the distribution of allelic frequen-
cies in a selectively neutral population with mutation. We refer to Ethier and Kurtz [18] and Etheridge [19] for surveys
on the Fleming–Viot process and related mathematical models from population genetics.

Moments of the classical Fleming–Viot process can be expressed in terms of a dual process involving Kingman’s
coalescent and semigroup for the mutation operator. The Λ-Fleming–Viot process generalizes the classical Fleming–
Viot process by replacing Kingman’s coalescent with the Λ-coalescent allowing multiple collisions. Formally, the
Λ-Fleming–Viot process is a Fleming–Viot process with general reproduction mechanism so that the total number of
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children from a parent can be comparable to the size of population. We refer to Birkner et al. [5] for a connection
between mutationless Λ-Fleming–Viot processes and continuous state branching processes. In this paper we only
consider the Fleming–Viot process with Brownian mutation that can also be interpreted as underlying spatial Brownian
motion.

The support properties are interesting in the study of measure-valued processes. For the Dawson–Watanabe super-
Brownian motion arising as a high density limit of empirical measures for near critical branching Brownian motions,
the modulus of continuity and the carrying dimensions have been studied systematically for its support process. We
refer to Chapter 7 of Dawson [8], Chapter 9 of Dawson [9] and Chapter III of Perkins [22] and references therein
for a collection of these results. The proofs involve the historically cluster representation, the Palm distribution for
the canonical measure and estimates obtained from PDE associated with the Laplace functional. For a superBrownian
motion with a general branching mechanism, Delmas [14] obtained results on Hausdorff dimensions of its support
and range using Brownian snake representation with subordination.

However, the approaches for Dawson–Watanabe superBrownian motions do not always apply to Fleming–Viot
processes which are not infinitely divisible. Consequently, there are only a few results available for Fleming–Viot
support processes so far. The earliest work on the compact support property for classical Fleming–Viot processes is
due to Dawson and Hochberg [10]. It was shown in [10] that at any fixed time T > 0 the classical Fleming–Viot
process with underlying Brownian motion has a compact support with Hausdorff dimension not greater than two.
Using non-standard techniques Reimers [24] improved the above result by showing that the carrying dimension of the
support is at most two simultaneously for all positive times. Applying a generalized Perkins disintegration theorem,
the support dimension was found in Ruscher [25] for a Fleming–Viot-like process obtained from mass normalization
and time change of a superBrownian motion with stable branching. The Λ-Fleming–Viot process does not allow a
compact support if the associated Λ-coalescent does not come down from infinity; see Blath [7]. Liu and Zhou [21]
recently extended the results in [10] to a class of Λ-Fleming–Viot processes whose associated Λ-coalescents come
down from infinity. We are not aware of any results on the modulus of continuity for Fleming–Viot support processes
although the modulus of continuity for superBrownian motion support had been first recovered by Dawson et al. [12]
more than twenty years ago and further studied in Dawson and Vinogradov [13] and in Dawson el al. [11].

The lookdown construction of Donnelly and Kurtz [15–17] is a powerful technique in the study of the Fleming–Viot
processes. Loosely speaking, the idea of lookdown construction is a discrete representation that leads to a nice version
of the corresponding measure-valued process. The lookdown construction naturally results in a genealogy process
describing the genealogical structure of the particles involved. In a sense it plays the role of historical processes for
Dawson–Watanabe superprocesses.

Donnelly and Kurtz [15] first proposed the lookdown construction of a system of countable particles embedded
into the classical Fleming–Viot process. They showed the duality between the classical Fleming–Viot process and
Kingman’s coalescent and recovered some previous results on the classical Fleming–Viot process using this explicit
representation. This representation was later extended in Donnelly and Kurtz [17] via a modified lookdown construc-
tion to a larger class of measure-valued processes that contain both the Λ-Fleming–Viot processes and the Dawson–
Watanabe superprocesses. Donnelly and Kurtz [16] also found a discrete representation for the classical Fleming–Viot
models with selection and recombination.

Birkner and Blath [4] further discussed the modified lookdown construction in [17] for the Λ-Fleming–Viot process
with jump type mutation operator. They also described how to recover the Λ-coalescent from the modified lookdown
construction.

For the Ξ -coalescent allowing simultaneous multiple collisions, a Poisson point process construction of the Ξ -
lookdown model can be found in Birkner et al. [6] by extending the modified lookdown construction of Donnelly and
Kurtz [17]. It was proved in [6] that the empirical measure of the exchangeable particles converges almost surely in
the Skorohod space of measure-valued paths to the so called Ξ -Fleming–Viot process with jump type mutation.

Using the modified lookdown construction of Donnelly and Kurtz, Liu and Zhou [21] proved that a class of Λ-
Fleming–Viot processes with underlying Brownian motion have compact supports at any fixed time T > 0 provided
the associated Λ-coalescents come down from infinity fast enough. Further, both lower and upper bounds were found
in [21] on Hausdorff dimension of support for the Λ-Fleming–Viot process at the time T , where the exact Hausdorff
dimension was shown to be two whenever the associated Λ-coalescent has a nontrivial Kingman component. These
results generalize the previous results of Dawson and Hochberg [10] on the classical Fleming–Viot processes.

In this paper, for the class of Λ-Fleming–Viot processes considered in [21], we refine the arguments in [21] to
further study their support properties. Our first result is a one-sided modulus of continuity type result for the ancestry
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process defined via the lookdown construction. The second result is a one-sided modulus of continuity for the Λ-
Fleming–Viot support process at any fixed time. The third result is on the uniform compactness of the Λ-Fleming–
Viot support and the associated range. Under an additional mild condition on coalescence rates of the corresponding
Λ-coalescent, we also obtain two results on support dimensions, where one is an uniform upper bound on Hausdorff
dimensions of supports at all positive times and the other is an upper bound on Hausdorff dimensions of ranges of the
Λ-Fleming–Viot support process. Again, the lookdown construction plays a key role throughout our arguments.

The rest of this paper is arranged as follows. In Section 2 we introduce the Λ-coalescent and the corresponding
coming down from infinity property. In Section 3 we briefly discuss the lookdown construction for Λ-Fleming–
Viot process with underlying Brownian motion and the associated ancestry process recovered from the lookdown
construction. In Section 4 we present the main results of this paper together with corollaries and propositions. Proofs
of the main results are deferred to Section 5.

2. The Λ-coalescent

2.1. The Λ-coalescent

We first introduce some notation. Put [n] ≡ {1, . . . , n} and [∞] ≡ {1,2, . . .}. An ordered partition of D ⊂ [∞] is a
countable collection π = {πi, i = 1,2, . . .} of disjoint blocks such that

⋃
i πi = D and minπi < minπj for i < j .

Then blocks in π are ordered by their least elements.
Denote by Pn the set of ordered partitions of [n] and by P∞ the set of ordered partitions of [∞]. Write 0[n] ≡

{{1}, . . . , {n}} for the partition of [n] consisting of singletons and 0[∞] for the partition of [∞] consisting of singletons.
Given n ∈ [∞] and π ∈ P∞, let Rn(π) ∈ Pn be the restriction of π to [n].

Kingman’s coalescent is a P∞-valued time homogeneous Markov process such that all different pairs of blocks
independently merge at the same rate. Pitman [23] and Sagitov [26] generalized the Kingman’s coalescent to the
Λ-coalescent which allows multiple collisions, i.e., more than two blocks may merge at a time. The Λ-coalescent
is defined as a P∞-valued Markov process Π ≡ (Π(t))t≥0 such that for each n ∈ [∞], its restriction to [n], Πn ≡
(Πn(t))t≥0 is a Pn-valued Markov process whose transition rates are described as follows: if there are currently b

blocks in the partition, then each k-tuple of blocks (2 ≤ k ≤ b) independently merges to form a single block at rate

λb,k =
∫

[0,1]
xk−2(1 − x)b−kΛ(dx), (1)

where Λ is a finite measure on [0,1]. It is easy to check that the rates (λb,k) are consistent so that for all 2 ≤ k ≤ b,

λb,k = λb+1,k + λb+1,k+1. (2)

Consequently, for any 1 ≤ m < n ≤ ∞, the coalescent process Rm(Πn(t)) given Πn(0) = πn has the same distribution
as Πm(t) given Πm(0) = Rm(πn).

With the transition rates determined by (1), there exists a one to one correspondence between Λ-coalescents and
finite measures Λ on [0,1].

For n = 2,3, . . . , denote by

λn =
n∑

k=2

(
n

k

)
λn,k (3)

the total coalescence rate starting with n blocks. It is clear that (λn)n≥2 is an increasing sequence, i.e., λn ≤ λn+1 for
any n ≥ 2. In addition, denote by

γn =
n∑

k=2

(k − 1)

(
n

k

)
λn,k

the rate at which the number of blocks decreases.
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2.2. Coming down from infinity

Given any Λ-coalescent Π ≡ (Π(t))t≥0 with Π(0) = 0[∞], let #Π(t) be the number of blocks in the partition Π(t).
The Λ-coalescent Π comes down from infinity if

P
(
#Π(t) < ∞)= 1

for all t > 0 and it stays infinite if

P
(
#Π(t) = ∞)= 1

for all t > 0. Suppose that the measure Λ has no atom at 1. It is shown by Schweinsberg [27] that

• the Λ-coalescent comes down from infinity if and only if
∑∞

n=2 γ −1
n < ∞;

• the Λ-coalescent stays infinite if and only if
∑∞

n=2 γ −1
n = ∞.

It is pointed out in Bertoin and Le Gall [3] that for

ψ(q) =
∫

[0,1]
(
e−qx − 1 + qx

)
x−2Λ(dx),

∞∑
n=2

γ −1
n < ∞ if and only if

∫ ∞

a

1

ψ(q)
dq < ∞,

where the integral is finite for some (and then for all) a > 0.

Example 2.1. In case of Λ = δ0, the corresponding coalescent is Kingman’s coalescent and comes down from infinity.

Example 2.2. For β ∈ (0,2) and

Λ(dx) = �(2)

�(2 − β)�(β)
x1−β(1 − x)β−1 dx,

the corresponding coalescent is Beta(2 − β,β)-coalescent.

• If β ∈ (0,1], it stays infinite.
• If β ∈ (1,2), it comes down from infinity.

3. The Λ-Fleming–Viot process and its lookdown construction

In this section, we first discuss the lookdown construction of Λ-Fleming–Viot process with underlying Brownian
motion. Then we explain how to recover the Λ-coalescent from the lookdown construction. Finally, we introduce the
ancestry process for the Λ-Fleming–Viot process from the lookdown construction.

3.1. The lookdown construction of Λ-Fleming–Viot process with underlying Brownian motion

Donnelly and Kurtz [17] introduced a modified lookdown construction with the empirical measure process converging
to measure-valued stochastic process. A key advantage of the lookdown construction is its projective property. Intu-
itively, in the lookdown model each particle is attached a “level” from the set {1,2, . . .}. The evolution of a particle
at level n only depends on the evolution of the finite particles at lower levels. This property allows us to construct
approximating particle systems, and their limit as n → ∞ in the same probability space.

Following Birkner and Blath [4], we now give a brief introduction on the modified lookdown construction of the
Λ-Fleming–Viot process with underlying Brownian motion. Let(

X1(t),X2(t),X3(t), . . .
)
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be an (Rd)∞-valued random variable, where for any i ∈ [∞], Xi(t) represents the spatial location of the particle
at level i. We require the initial values {Xi(0), i ∈ [∞]} to be exchangeable random variables so that the limiting
empirical measure

lim
n→∞

1

n

n∑
i=1

δXi(0)

exists almost surely by de Finetti’s theorem.
Let Λ be the finite measure associated to the Λ-coalescent. The reproduction in the particle system consists of

two kinds of birth events: the events of single birth determined by measure Λ({0})δ0 and the events of multiple births
determined by measure Λ restricted to (0,1] that is denoted by Λ0.

To describe the evolution of the system during events of single birth, let {Nij (t): 1 ≤ i < j < ∞} be independent
Poisson processes with common rate Λ({0}). At a jump time t of Nij , the particle at level j looks down at the particle
at level i and assumes its location (therefore, particle at level i gives birth to a new particle). Values of particles at
levels above j are shifted accordingly, i.e., for ΔNij (t) = 1, we have

Xk(t) =
{

Xk(t−), if k < j ,
Xi(t−), if k = j ,
Xk−1(t−), if k > j .

(4)

For those events of multiple births we can construct an independent Poisson point process Ñ on R
+ × (0,1]

with intensity measure dt ⊗ x−2Λ0(dx). Let {Uij , i, j ∈ [∞]} be i.i.d. uniform [0,1] random variables. Jump points
{(ti , xi)} for Ñ correspond to the multiple birth events. For t ≥ 0 and J ⊂ [n] with |J | ≥ 2, define

Nn
J (t) ≡

∑
i:ti≤t

∏
j∈J

1{Uij ≤xi }
∏

j∈[n]\J
1{Uij >xi }. (5)

Then Nn
J (t) counts the number of birth events among the particles from levels {1,2, . . . , n} such that exactly those at

levels in J are involved up to time t . Intuitively, at a jump time ti , a uniform coin is tossed independently for each
level. All the particles at levels j with Uij ≤ xi participate in the lookdown event. More precisely, those particles
involved jump to the location of the particle at the lowest level involved. The spatial locations of particles on the other
levels, keeping their original order, are shifted upwards accordingly, i.e., if t = ti is the jump time and j is the lowest
level involved, then

Xk(t) =
⎧⎨
⎩

Xk(t−), for k ≤ j ,
Xj(t−), for k > j with Uik ≤ xi ,
Xk−J k

t
(t−), otherwise,

where J k
ti

≡ #{m < k,Uim ≤ xi} − 1.
Between jump times of the Poisson processes, particles at different levels move independently according to Brow-

nian motions in R
d .

We assume that the above-mentioned lookdown construction is carried out in a probability space (Ω,F ,P).
For each t > 0, X1(t),X2(t), . . . are known to be exchangeable random variables so that

X(t) ≡ lim
n→∞X(n)(t) ≡ lim

n→∞
1

n

n∑
i=1

δXi(t)

exists almost surely by de Finetti’s theorem and follows the probability law of the Λ-Fleming–Viot process with
underlying Brownian motion. Further, we have that X(n) converges to X in the path space DM1(R

d )([0,∞)) equipped
with the Skorohod topology, where M1(R

d) denotes the space of probability measures on R
d equipped with the

topology of weak convergence. See Theorem 3.2 of [17].
In the sequel we always write X for such a Λ-Fleming–Viot process. Write suppμ for the closed support of

measure μ.
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Lemma 3.1. For any t ≥ 0, P-a.s. the spatial locations of the countably many particles in the lookdown construction
satisfy{

X1(t),X2(t),X3(t), . . .
}⊆ suppX(t).

Proof. In the lookdown construction, (Xn(t))n≥1 are exchangeable at any time t ≥ 0. By de Finetti’s theorem (cf.
Aldous [1]) such a system is a mixture of i.i.d. sequence, i.e., given the empirical measure

X(t) = lim
n→∞

1

n

n∑
i=1

δXi(t),

the random variables {Xi(t), i = 1,2, . . .} are jointly distributed as i.i.d. samples from the directing measure X(t).
Therefore, Xn(t) ∈ suppX(t) for any n ∈ [∞]. �

3.2. The Λ-coalescent in the lookdown construction

The birth events induce a family structure to the particle system so we can present the genealogy process first in-
troduced in Donnelly and Kurtz [17]. For any 0 ≤ t ≤ s and n ∈ [∞], denote by Ls

n(t) the ancestor’s level at time t

for the particle with level n at time s. Given s and n, Ls
n(t) is nondecreasing and left continuous in t . Moreover, the

genealogy processes (Ls
n)s≥0, n = 1,2, . . . satisfy the equations

Ls
n(t) = n −

∑
1≤i<j<n

∫ s

t−
1{Ls

n(u)>j} dNij (u)

−
∑

1≤i<j≤n

∫ s

t−
(j − i)1{Ls

n(u)=j} dNij (u)

−
∑

J⊂[n]

∫ s

t−
(
Ls

n(u) − minJ
)
1{Ls

n(u)∈J } dNn
J (u)

−
∑

J⊂[n]

∫ s

t−
(∣∣J ∩ {

1, . . . ,Ls
n(u)

}∣∣− 1
)× 1{Ls

n(u)>minJ,Ls
n(u)/∈J } dNn

J (u).

Given T > 0, for any 0 ≤ t ≤ T and i ∈ [∞], LT
i (T − t) represents the ancestor’s level at time T − t of the particle

with level i at time T and XLT
i (T −t)((T − t)−) represents that ancestor’s location.

Write (ΠT (t))0≤t≤T for the P∞-valued process such that i and j belong to the same block of ΠT (t) if and only

if LT
i (T − t) = LT

j (T − t), i.e., i and j belong to the same block if and only if the two particles with levels i and j ,

respectively, at time T share a common ancestor at time T − t . The process (ΠT (t))0≤t≤T turns out to have the same
law as the Λ-coalescent running up to time T . See Donnelly and Kurtz [17] and Birkner and Blath [4].

The next property of the genealogy process can be found in Lemma 3.1 of [21].

Lemma 3.2. For any fixed T > 0, let (ΠT (t))0≤t≤T be the Λ-coalescent recovered from the lookdown construction.
Then given t ∈ [0, T ] and the ordered random partition ΠT (t) = {πl(t): l = 1, . . . ,#ΠT (t)}, we have

LT
j (T − t) = l for any j ∈ πl(t).

3.3. The ancestry process

For any T > 0, denote by

(X1,s ,X2,s ,X3,s , . . .)0≤s≤T
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the ancestry process with Xi,s defined by

Xi,s(t) ≡ XLs
i (t)

(t−) for 0 ≤ t ≤ s. (6)

Intuitively Xi,s keeps track of locations for all the ancestors of the particle with level i at time s.
For any s ≥ 0, we can recover the Λ-coalescent (Πs(t))0≤t≤s from the lookdown construction. For any 0 ≤ r < s,

set

Nr,s ≡ #Πs(s − r)

and

Πs(s − r) ≡ {
πl : 1 ≤ l ≤ Nr,s

}
,

where πl ≡ πl(r, s),1 ≤ l ≤ Nr,s are all the disjoint blocks of Πs(s − r) ordered by their least elements. Let H(r, s)

be the maximal dislocation between the countably many particles at time s and their respective ancestors at time r .
Applying Lemma 3.2, we have

H(r, s) ≡ max
1≤l≤Nr,s

max
j∈πl

∣∣Xj(s) − XLs
j (r)(r−)

∣∣
= max

1≤l≤Nr,s
max
j∈πl

∣∣Xj(s) − Xl(r−)
∣∣.

4. Some support properties of the Λ-Fleming–Viot process

4.1. Main results

For any T > 0, let (ΠT (t))0≤t≤T be the Λ-coalescent recovered from the lookdown construction with ΠT (0) = 0[∞].
Write Π ≡ (Π(t))t≥0 for the unique (in law) Λ-coalescent such that (Π(t))0≤t≤T has the same distribution as
(ΠT (t))0≤t≤T . We call Π the Λ-coalescent associated to the Λ-Fleming–Viot process X.

For any positive integer m, set

Tm ≡ inf
{
t ≥ 0: #Π(t) ≤ m

}
(7)

with the convention inf∅ = ∞.
Given η > 0, for any Borel set A ⊂R

d , let B(A,η) be its closed η-neighborhood such that

B(A,η) ≡
⋃
x∈A

B(x, η),

where B(x, η) denotes the closed ball centered at x with radius η.
We now recall the definition of Hausdorff dimension. Given A ⊂R

d and β > 0, η > 0, let

Hβ
η (A) ≡ inf{Sl}∈ϕη

∑
l

d(Sl)
β,

where d(Sl) denotes the diameter of ball Sl in R
d and ϕη denotes the collection of η-covers of set A by balls with

diameters at most η. The Hausdorff β-measure of A is defined by

Hβ(A) = lim
η→0

Hβ
η (A).

The Hausdorff dimension of A is defined by

dimA ≡ inf
{
β > 0: Hβ(A) = 0

}= sup
{
β > 0: Hβ(A) = ∞}

.
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Recall that X is the Λ-Fleming–Viot process with underlying Brownian motion. For any subset I ⊂ R ∩ [0,∞),
let

R(I) ≡
⋃
t∈I

suppX(t)

be the range of suppX on the time interval I .
Throughout the paper, we always write C or C with subscript for a positive constant and write C(x) for a constant

depending on x whose values might vary from place to place. The main results of this paper are the following theorems.
We defer the proofs to Section 5.

Assumption I. There exists a constant α > 0 such that the associated Λ-coalescent Π satisfies

lim sup
m→∞

mα
ETm < ∞.

Theorem 4.1. Under Assumption I and for any T > 0, there exist a positive random variable θ ≡ θ(T , d,α) < 1 and
a constant C ≡ C(d,α) such that P-a.s. for all r, s ∈ [0, T ] satisfying 0 < s − r ≤ θ , we have

H(r, s) ≤ C

√
(s − r) log

(
1/(s − r)

)
. (8)

Theorem 4.2. Under Assumption I and given any fixed t ≥ 0, there exist a positive random variable θ ≡ θ(t, d,α) < 1
and a constant C ≡ C(d,α) such that for any Δt with 0 < Δt ≤ θ we have P-a.s.

suppX(t + Δt) ⊆ B
(
suppX(t),C

√
Δt log(1/Δt)

)
. (9)

Theorem 4.3. Under Assumption I, suppX(t) is compact for all t > 0 P-a.s. Further, if suppX(0) is compact, then
R([0, t)) is compact for all t > 0 P-a.s.

Condition A. There exists a constant α > 0 such that the associated Λ-coalescent Π satisfies

lim sup
m→∞

mα

∞∑
b=m+1

λb
−1 < ∞.

Remark 4.4. The Kingman’s coalescent satisfies Condition A with α = 1. In case of β ∈ (1,2), the Beta(2 − β,β)-
coalescent satisfies Condition A with α = β − 1.

Theorem 4.5. Suppose that Condition A holds. Then

dim suppX(t) ≤ 2/α

for all t > 0 P-a.s.

Theorem 4.6. Suppose that Condition A holds. Then for any 0 < δ < T ,

dimR
([δ, T )

)≤ 2 + 2/α P-a.s.
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4.2. A sufficient condition

Recall the Markov chain introduced in [21]. For any n, (Πn(t))t≥0 is the Λ-coalescent Π restricted to [n] with
Πn(0) = 0[n]. For any n > m, the block counting process (#Πn(t) ∨ m)t≥0 is a Markov chain with initial value n and
absorbing state m. For any n ≥ b > m, let (μb,k)m≤k≤b−1 be its transition rates such that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μb,b−1 = (
b
2

)
λb,2,

μb,b−2 = (
b
3

)
λb,3,

· · · · · ·
μb,m+1 = (

b
b−m

)
λb,b−m,

μb,m =∑b
k=b−m+1

(
b
k

)
λb,k.

(10)

The total transition rate is

μb =
b−1∑
k=m

μb,k =
b∑

k=2

(
b

k

)
λb,k = λb.

For b > m, let γb,m be the total rate at which the block counting Markov chain starting at b is decreasing, i.e.,

γb,m =
{∑b−m

k=2 (k − 1)
(
b
k

)
λb,k +∑b

k=b−m+1(b − m)
(
b
k

)
λb,k, if b ≥ m + 2,∑b

k=2

(
b
k

)
λb,k, if b = m + 1.

(11)

Condition B. There exists a constant α > 0 such that

lim sup
m→∞

mα
∞∑

b=m+1

γb,m
−1 < ∞.

Remark 4.7. It follows from the proof of Lemma 4.4 in [21] that

ETm ≤
∞∑

b=m+1

γb,m
−1.

Recalling the definitions of γb,m by (11) and λb by (3), we have λb ≤ γb,m for any b > m. Then for any α > 0, we have

mα
ETm ≤ mα

∞∑
b=m+1

γb,m
−1 ≤ mα

∞∑
b=m+1

λb
−1.

Therefore, Condition A implies Condition B which is sufficient for Assumption I.
Condition A is not a strong requirement since for the Beta coalescents Condition A is sufficient and necessary for

coming down from infinity.
The speed of coming down from infinity for Λ-coalescent is discussed in Berestycki et al. [2]. It is shown that there

exists a deterministic function ν : (0,∞)→(0,∞) such that #Π(t)/ν(t)→1 as t→0 both almost surely and in Lp for
p ≥ 1. For our purpose, it is possible to replace Assumption I with an assumption on the behavior of ν(t) for t close
to 0.

4.3. Corollaries and propositions

For t > 0, let

r(t) ≡ inf
{
R ≥ 0: suppX(t) ⊆ B(0,R)

}
.

The next result is similar to Theorem 2.1 of Tribe [28] on the support process of superBrownian motion; also see
Theorem 9.3.2.3 of Dawson [9]. It follows immediately from Theorem 4.2.
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Corollary 4.8. Under Assumption I, there exists a constant C > 0 such that

Pδ0

(
lim sup

t↓0

sup0≤u≤t r(u)√
t log(1/t)

≤ C

)
= 1,

where Pδ0 denotes the law of X with X(0) = δ0.

Corollary 4.9. Suppose that Condition A holds. For any T > 0, we have

Pδ0

(
dimR

([0, T )
)≤ 2 + 2/α

)= 1.

We defer the proof of Corollary 4.9 to Section 5.
The next result follows from the proof of Theorem 4.5 and a standard result of Hausdorff measure; see Lemma 6.3

of Falconer [20].

Proposition 4.10. Suppose that Condition A holds. Then P-a.s. for all t > 0 and ε > 0 we have

lim sup
r→0+

X(t)(B(x, r))

r2/α+ε
> 0

for X(t) almost all x.

For any 0 < t < 1, let

h(t) ≡√
t log(1/t). (12)

Proposition 4.11. Let X be any Λ-Fleming–Viot process with Λ({0}) > 0 and underlying Brownian motion in R
d

for d ≥ 2. Then given any fixed t ≥ 0, with probability one the process suppX(t) has the one-sided modulus of
continuity with respect to Ch, where C ≡ C(d) is the constant determined in Theorem 4.2. Further, with probability
one suppX(t) is compact for all t > 0 and if suppX(0) is compact, then R([0, t)) is also compact for all t > 0. In
addition, with probability one

dim suppX(t) ≤ 2

for all t > 0. Finally, given any 0 < δ < T , with probability one

dimR
([δ, T )

) ≤ 4.

Proof. Since Λ({0}) > 0, the Λ-coalescent has a nontrivial Kingman component. Then

λb ≥ 1

2
Λ
({0})b(b − 1)

and

∞∑
b=m+1

1

λb

≤
∞∑

b=m+1

2

Λ({0})b(b − 1)
= 2

Λ({0})m,

i.e., Condition A holds with α = 1. Therefore, the results follow from Remark 4.7 and Theorems 4.2–4.6. �

Remark 4.12. The uniform upper bound on the Hausdorff dimension of classical Fleming–Viot support process was
first proved by Reimers [24], where a non-standard construction of the classical Fleming–Viot process is used to
establish this result.
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Recall the (c, ε, γ )-property introduced in [21]. We say that a Λ-coalescent has the (c, ε, γ )-property, if there exist
constants c > 0 and ε, γ ∈ (0,1) such that the measure Λ restricted to [0, ε] is absolutely continuous with respect to
Lebesgue measure and

Λ(dx) ≥ cx−γ dx for all x ∈ [0, ε].

The Λ-coalescents with the (c, ε, γ )-property come down from infinity.

Proposition 4.13. Let X be any Λ-Fleming–Viot process with underlying Brownian motion in R
d for d ≥ 2. If the as-

sociated Λ-coalescent has the (c, ε, γ )-property, then given any fixed t ≥ 0, with probability one the process suppX(t)

has the one-sided modulus of continuity with respect to Ch, where C ≡ C(d,γ ) is the constant determined in Theo-
rem 4.2. Further, with probability one suppX(t) is compact for all t > 0 and if suppX(0) is compact, then R([0, t))

is also compact for all t > 0. In addition, with probability one

dim suppX(t) ≤ 2/γ

for all t > 0. Finally, given any 0 < δ < T , with probability one

dimR
([δ, T )

) ≤ 2 + 2/γ.

Proof. It has been proved by Lemma 4.13 of [21] that for any n ≥ 2, there exists a positive constant C(c, ε, γ ) such
that the total coalescence rate of the Λ-coalescent with the (c, ε, γ )-property satisfies

λn ≥ C(c, ε, γ )n1+γ .

Then

∞∑
b=m+1

1

λb

≤ 1

C(c, ε, γ )

∫ ∞

m

1

x1+γ
dx ≤ 1

γC(c, ε, γ )mγ
,

i.e., Condition A holds with α = γ . Consequently, the results follow from Remark 4.7 and Theorems 4.2–4.6. �

Now we discuss the support properties for Beta(2−β,β)-Fleming–Viot process with underlying Brownian motion.
It is known that the Beta(2−β,β)-coalescent stays infinite if β ∈ (0,1] and comes down from infinity if β ∈ (1,2). For
β ∈ (1,2), given any ε ∈ (0,1), the Beta(2−β,β)-coalescent has the (c, ε,β −1)-property. Therefore, the conclusions
of Proposition 4.13 hold with γ = β − 1.

For t ≥ 0 put

St ≡
∞⋂

n=1

R
([t, t + 1/n)

)
.

Proposition 4.14. Under Assumption I and for any T > 0, there exist a positive random variable θ ≡ θ(T , d,α) < 1
and a constant C ≡ C(d,α) such that P-a.s.

suppX(t + Δt) ⊆ B
(
St ,Ch(Δt)

)
for all 0 ≤ t < t + Δt ≤ T and 0 < Δt ≤ θ .

We also defer the proof of Proposition 4.14 to Section 5.
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5. Proofs of Theorems 4.1–4.6, Corollary 4.9 and Proposition 4.14

5.1. The modulus of continuity for the ancestry process

In this subsection we first obtain some estimates on the Λ-coalescent and on the maximal dislocation of the particles
from their respective ancestors.

Denote by �x� the integer part of x for any x ∈ R. Given T > 0 and Δ > 0, we can divide the interval [0, T ] into
subintervals as follows:

[0,Δ], [Δ,2Δ], . . . , [�T/Δ − 1�Δ, �T/Δ�Δ]
,

[�T/Δ�Δ,T
]
.

Set Δ ≡ Δn = 2−n. Let ST
n be the collection of the endpoints of the first �2nT � subintervals, i.e.,

ST
n ≡ {

k2−n: 0 ≤ k ≤ 2nT
}
.

Put

ST ≡
⋃
n≥1

ST
n =

⋃
n≥1

{
k2−n: 0 ≤ k ≤ 2nT

}
.

Clearly, given any T > 0, ST is the collection of all the dyadic rationals in [0, T ]. So ST is a dense subset of [0, T ].
For any n ∈ [∞], let {An,k: 1 ≤ k ≤ 2nT } be the collection of the first �2nT � subintervals in the partition so that

An,k ≡ [
(k − 1)2−n, k2−n

]
.

For simplicity, we denote

Nn,k ≡ N(k−1)2−n,k2−n

.

Also denote by Hn,k the maximal dislocation over interval An,k of all the Brownian motions followed by the
countably many particles alive at time k2−n and their respective ancestors at time (k − 1)2−n, i.e.,

Hn,k ≡ H
(
(k − 1)2−n, k2−n

)
.

For any positive integer m, let

T n,k
m ≡ inf

{
t ∈ [

0,2−n
]
: #Πk2−n

(t) ≤ m
}

with the convention inf∅ = 2−n. Notice that for any fixed n ∈ [∞] and m, the random times {T n,k
m : 1 ≤ k ≤ 2nT }

follow the same distribution. Write T
n,k
x ≡ T

n,k
�x� for any x > 0.

We need a standard estimate on Brownian motion.

Lemma 5.1. Given any x > 0 and d-dimensional standard Brownian motion (B(s))s≥0, we have

P

(
sup

0≤s≤t

∣∣B(s)
∣∣ > x

)
≤
√

8d3t

π

1

x
exp

(
− x2

2dt

)
.

Lemma 5.2. Under Assumption I and for any T > 0, there exists a positive constant C4(d,α) such that P-a.s.

max
1≤k≤2nT

Hn,k ≤ C4(d,α)h
(
2−n

)
for n large enough, where h is defined by (12).
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Proof. Given any n and 1 ≤ k ≤ 2nT , we first divide each interval An,k into countably many subintervals as follows:

J
n,k
0 ≡ [

(k − 1)2−n, k2−n − T
n,k

8(n+1)/α

]
and

J
n,k
l ≡ [

k2−n − T
n,k

8(n+l)/α , k2−n − T
n,k

8(n+l+1)/α

]
for l = 1,2,3, . . . . Consequently, the lengths of these countably many subintervals satisfy that∣∣Jn,k

0

∣∣≤ 2−n and
∣∣Jn,k

l

∣∣≤ T
n,k

8(n+l)/α = T
n,k

2(3n+3l)/α for l = 1,2,3, . . . .

The right endpoints of these subintervals (b
n,k
l )l≥1 ≡ (k2−n − T

n,k

2(3n+3l)/α )l≥1 consist of a sequence of random times

converging increasingly to k2−n. Set b
n,k
0 ≡ (k − 1)2−n for convenience.

For l = 0,1,2, . . . , let D
n,k
l be the maximal dislocation of the ancestors (for those countably many particles alive

at time k2−n) at time b
n,k
l+1 from their respective ancestors at time b

n,k
l , i.e.,

D
n,k
l ≡ max

1≤i≤N
b
n,k
l

,k2−n

max
j∈πi

∣∣X
Lk2−n

j (b
n,k
l+1)

(
b

n,k
l+1−

)− Xi

(
b

n,k
l −)∣∣, (13)

where {πi : 1 ≤ i ≤ Nb
n,k
l ,k2−n} denotes the collection of all the disjoint blocks of partition Πk2−n

(k2−n −b
n,k
l ) ordered

by their least elements.
In the case of b

n,k
l+1 = b

n,k
l , i.e., |J n,k

l | = 0, which corresponds to the situation of either T
n,k

2(3n+3l+3)/α = 2−n or

T
n,k

2(3n+3l+3)/α = T
n,k

2(3n+3l)/α , it follows from Lemma 3.2 that

Lk2−n

j

(
b

n,k
l+1

)= Lk2−n

j

(
b

n,k
l

)= i

for any j ∈ πi with 1 ≤ i ≤ Nb
n,k
l ,k2−n

. Hence we have D
n,k
l = 0 in (13).

By the lookdown construction and the coming down from infinity property, there exists a finite number of ancestors
at each time b

n,k
l , l = 0,1,2, . . . for those countably many particles alive at time k2−n, i.e.,

#
{
Lk2−n

j

(
b

n,k
l

)
: j ∈ [∞]}< ∞.

So both maximums in (13) are in fact taken over finite sets. Put

Dn,k ≡
∞∑
l=0

D
n,k
l .

For dimension d and constant α in Assumption I, let C1(d,α) be a positive constant satisfying

C1(d,α) >
√

2d(3/α + 1).

Now we estimate the total maximal dislocation Dn,k as follows. Let

In ≡ P

(
max

1≤k≤2nT
Dn,k >

∞∑
l=0

C1(d,α)h
(
2−(n+2l)

))
.

Since Dn,k =∑∞
l=0 D

n,k
l , we have{

Dn,k >

∞∑
l=0

C1(d,α)h
(
2−(n+2l)

)} ⊆
∞⋃
l=0

{
D

n,k
l > C1(d,α)h

(
2−(n+2l)

)}
.
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Therefore,

In ≤
2nT∑
k=1

∞∑
l=0

P
(
D

n,k
l > C1(d,α)h

(
2−(n+2l)

))
.

Under Assumption I, there exists a positive constant C such that for N large enough and for all n > N, ET8n/α ≤
C8−n. For all those n > N, since D

n,k
l = 0 for those l with interval length |Jn,k

l | = 0, we only need to consider the

case of |J n,k
l | > 0.

Observe that for l = 0,1,2, . . . , the total number of Brownian motion paths connecting the ancestors (of the
countably many particles alive at k2−n) at time b

n,k
l+1 to their respective ancestors at earlier time b

n,k
l is at most

8(n+l+1)/α . Since |J n,k
0 | = b

n,k
1 − b

n,k
0 ≤ 2−n, we have

P
(
D

n,k
0 > C1(d,α)h

(
2−n

))≤ 8(n+1)/α
P

(
sup

0≤s≤2−n

∣∣B(s)
∣∣ > C1(d,α)h

(
2−n

))
.

For l = 1,2, . . . , we have

P
(
D

n,k
l > C1(d,α)h

(
2−(n+2l)

))
≤ P

(∣∣Jn,k
l

∣∣> 2−(n+2l)
)+ P

(
D

n,k
l > C1(d,α)h

(
2−(n+2l)

)
,0 <

∣∣J n,k
l

∣∣≤ 2−(n+2l)
)
.

Since |Jn,k
l | ≤ T

n,k

2(3n+3l)/α , for any n > N the length of interval J
n,k
l satisfies

P
(∣∣Jn,k

l

∣∣> 2−(n+2l)
) ≤ P

(
T

n,k

2(3n+3l)/α > 2−(n+2l)
)≤ 2n+2l

ET
n,k

2(3n+3l)/α ≤ C2−(2n+l).

We further have

P
(
D

n,k
l > C1(d,α)h

(
2−(n+2l)

))
≤ C2−(2n+l) + 8(n+l+1)/α

P

(
sup

0≤s≤2−(n+2l)

∣∣B(s)
∣∣ > C1(d,α)h

(
2−(n+2l)

))
.

Therefore,

In ≤ 2nT 8(n+1)/α
P

(
sup

0≤s≤2−n

∣∣B(s)
∣∣ > C1(d,α)h

(
2−n

))

+ 2nT

∞∑
l=1

(
C2−(2n+l) + 8(n+l+1)/α

P

(
sup

0≤s≤2−(n+2l)

∣∣B(s)
∣∣ > C1(d,α)h

(
2−(n+2l)

)))

=
∞∑
l=1

CT 2−(n+l) + 2nT

∞∑
l=0

8(n+l+1)/α
P

(
sup

0≤s≤2−(n+2l)

∣∣B(s)
∣∣ > C1(d,α)h

(
2−(n+2l)

))
.

It follows from Lemma 5.1 that

P

(
sup

0≤s≤2−(n+2l)

∣∣B(s)
∣∣ > C1(d,α)h

(
2−(n+2l)

))

≤ 1

C1(d,α)

√
8d3

π(n + 2l) log 2
exp

(
−C2

1(d,α)(n + 2l) log 2

2d

)

≤ 1

C1(d,α)

√
8d3

π log 2
2−(C2

1 (d,α)(n+2l))/(2d)

≡ C2(d,α)2−(C2
1 (d,α)(n+2l))/(2d).
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Therefore, for any n > N we have

In ≤ CT 2−n + 2nT

∞∑
l=0

8(n+l+1)/αC2(d,α)2−(C2
1 (d,α)(n+2l))/(2d)

≤ CT 2−n +
∞∑
l=0

T C2(d,α)2−((C2
1 (d,α)/(2d))−3/α−1)n−((C2

1 (d,α)/d)−3/α)l+3/α.

Since C1(d,α) >
√

2d(3/α + 1), it follows that

In ≤ CT 2−n + T C3(d,α)2−(C2
1 (d,α)/(2d)−3/α−1)n, (14)

where

C3(d,α) ≡
∞∑
l=0

C2(d,α)2−(C2
1 (d,α)/d−3/α)l+3/α.

Both terms on the right-hand side of (14) are summable with respect to n. Thus,
∑

n In < ∞, and it follows from the
Borel–Cantelli lemma that P-a.s.

max
1≤k≤2nT

Dn,k ≤
∞∑
l=0

C1(d,α)h
(
2−(n+2l)

)

≤ C1(d,α)
√

2−nn log 2

(
1 +

∞∑
l=1

√
2−2l+1l

)

≡ C4(d,α)
√

2−nn log 2

for n large enough.
By the lookdown construction and the arguments in Lemmas 4.6 and 4.7 of [21] we have Hn,k ≤ Dn,k . Thus, P-a.s.

max
1≤k≤2nT

Hn,k ≤ max
1≤k≤2nT

Dn,k ≤ C4(d,α)h
(
2−n

)
for n large enough. �

Lemma 5.3 follows from the lookdown construction.

Lemma 5.3. For any r, t, s with 0 ≤ r ≤ t ≤ s we have

H(r, s) ≤ H(r, t) + H(t, s)

with the convention H(r, r) = H(s, s) ≡ 0.

We are ready to prove the one-sided modulus of continuity for the ancestry process.

Proof of Theorem 4.1. We first show that P-a.s. for all r, s ∈ ST satisfying 0 < s − r ≤ θ ,

H(r, s) ≤ Ch(s − r).

The following argument is similar to that in Section III.1 of Perkins [22].
By Lemma 5.2, given T > 0, there exist an event ΩT,d,α of probability one, and an integer-valued random variable

N(T , d,α) big enough such that 2−N(T ,d,α) ≤ e−1 and

max
1≤k≤2nT

Hn,k ≤ C4(d,α)h
(
2−n

)
, n > N(ω,T , d,α),ω ∈ ΩT,d,α. (15)
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Let θ ≡ θ(ω,T , d,α) = 2−N(ω,T ,d,α). For any r, s ∈ ST with 0 < s − r ≤ 2−N(ω,T ,d,α) = θ , there exists an n ≥
N(ω,T , d,α) such that 2−(n+1) < s − r ≤ 2−n. Recall that

ST
k = {

l2−k: 0 ≤ l ≤ 2kT
}

and ST =
⋃
k≥1

ST
k = [0, T ].

For any k > n, choose sk ∈ ST
k such that sk ≤ s and sk is the largest such value. Then

sk ↑ s, sk+1 = sk + jk+12−(k+1) with jk+1 ∈ {0,1}.
Since s ∈ ST , then (sk)k>n is a sequence with at most finite terms that are not equal to s. Applying (15), we have

H(sk, sk+1) ≤ C4(d,α)jk+1h
(
2−(k+1)

)
. (16)

By Lemma 5.3,

H(sn+1, s) ≤
∞∑

k=n+1

H(sk, sk+1)

≤
∞∑

k=n+1

C4(d,α)jk+1h
(
2−(k+1)

)

≤ C4(d,α)

∞∑
k=n+1

√
2−(k+1)(k + 1) log 2

≤ C4(d,α)

√
2−(n+1)(n + 1) log 2

∞∑
k=1

√
2−k+1k

≡ C5(d,α)

√
2−(n+1)(n + 1) log 2, (17)

where observe that only finitely many terms are nonzero in the summation on the right-hand side of the first inequality.
Similarly, for any k > n, choose rk ∈ ST

k such that rk ≥ r and rk is the smallest such value. Then

rk ↓ r, rk+1 = rk − j ′
k+12−(k+1) with j ′

k+1 ∈ {0,1}.
Applying (15), we have

H(rk+1, rk) ≤ C4(d,α)j ′
k+1h

(
2−(k+1)

)
.

Similar to (17), by Lemma 5.3 we have

H(r, rn+1) ≤
∞∑

k=n+1

H(rk+1, rk)

≤
∞∑

k=n+1

C4(d,α)j ′
k+1h

(
2−(k+1)

)

≤ C5(d,α)

√
2−(n+1)(n + 1) log 2. (18)

Since 2−(n+1) < s − r ≤ 2−n, we have 0 ≤ sn+1 − rn+1 ≤ in+12−(n+1) with in+1 ∈ {0,1,2}. It comes from (16)
and Lemma 5.3 that

H(rn+1, sn+1) ≤ 2C4(d,α)h
(
2−(n+1)

)= 2C4(d,α)

√
2−(n+1)(n + 1) log 2. (19)
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Combining (17), (18) and (19), we have P-a.s. for all r, s ∈ ST with 0 < s − r ≤ θ

H(r, s) ≤ H(r, rn+1) + H(rn+1, sn+1) + H(sn+1, s)

≤ 2C4(d,α)

√
2−(n+1)(n + 1) log 2 + 2C5(d,α)

√
2−(n+1)(n + 1) log 2

≤ C(d,α)

√
2−(n+1)(n + 1) log 2,

where C(d,α) ≡ 2C4(d,α) + 2C5(d,α).
Function h is increasing on (0, e−1]. Since

2−(n+1) < s − r ≤ θ ≤ e−1,

we have

H(r, s) ≤ C(d,α)h
(
2−(n+1)

)≤ C(d,α)h(s − r) (20)

for all r, s ∈ ST satisfying 0 < s − r ≤ θ .
Finally, for any 0 < r < s < T with s − r < θ/2, find sequences (rm) ⊆ ST and (sn) ⊆ ST with rm ↑ r and sn ↓ s.

By the lookdown construction, for any j ∈ [∞],
∣∣Xj(s) − XLs

j (r)(r−)
∣∣

≤ ∣∣Xj(s) − Xj(sn)
∣∣+ ∣∣Xj(sn) − XL

sn
j (rm)(rm−)

∣∣
+ ∣∣XL

sn
j (rm)(rm−) − XL

sn
j (r)(r−)

∣∣+ ∣∣XL
sn
j (r)(r−) − XLs

j (r)(r−)
∣∣. (21)

Let both n and m be big enough such that 0 < sn − rm ≤ θ . It follows from (20) that the second term on the right-hand
side of (21) is bounded from above by C(d,α)h(sn − rm). First fix n and let m → ∞. The third term tends to 0
because XL

sn
j (·)(·−) is continuous for any j ∈ [∞]. Then letting n → ∞, the first term tends to 0 because Xj(·) is

right continuous for any j ∈ [∞]. The last term is equal to 0 for large n since sn is then so close to s that there is no
lookdown event involving levels {1,2, . . . , j} during time interval (s, sn]. Consequently,

∣∣Xj(s) − XLs
j (r)(r−)

∣∣
≤ lim

n→∞
∣∣Xj(s) − Xj(sn)

∣∣+ lim
n→∞ lim

m→∞C(d,α)h(sn − rm)

+ lim
n→∞ lim

m→∞
∣∣XL

sn
j (rm)(rm−) − XL

sn
j (r)(r−)

∣∣+ lim
n→∞

∣∣XL
sn
j (r)(r−) − XLs

j (r)(r−)
∣∣

= C(d,α)h(s − r).

Then (8) follows. �

Remark 5.4. It follows from estimate (14) that there exist positive constants C6 ≡ C6(T , d,α) and C7 ≡ C7(d,α)

such that for ε > 0 small enough

P(θ ≤ ε) ≤ C6ε
C7 .

5.2. The modulus of continuity for the Λ-Fleming–Viot support process and uniform compactness for the support
and range

We will need the following observation on weak convergence.
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Lemma 5.5. If {(νn)n≥1, ν} ⊆ M1(R
d) and νn weakly converges to ν, then we have

suppν ⊆
⋂
m≥1

⋃
n≥m

suppνn.

Proof. Suppose that there exists an x ∈R
d such that

x ∈ suppν ∩
⋃
n≥m

suppνn

c

for some m. Since
⋃

n≥m suppνn
c

is an open set, there exists a positive value δ such that {y: |y − x| < δ} ⊆⋃
n≥m suppνn

c
. We can define a nonnegative and continuous function g satisfying g > 0 on {y: |y − x| < δ/2}

and g = 0 on {y: |y − x| ≥ δ}. Then 〈νn, g〉 = 0 for any n ≥ m but 〈ν, g〉 > 0. Consequently, 〈νn, g〉 � 〈ν, g〉, which
contradicts the fact that νn weakly converges to ν. �

Proof of Theorem 4.2. Applying Theorem 4.1, there exist a positive random variable θ ≡ θ(T , d,α) and a constant
C ≡ C(d,α) such that given any fixed t ∈ [0, T ), P-a.s. for all r ∈ ST ∩ (t, t + θ ], we have

H(t, r) ≤ Ch(r − t),

which gives the upper bound for the maximal dislocation between the countably many particles at time r and their cor-
responding ancestors at time t . By Lemma 3.2, the ancestors at time t are exactly {X1(t−),X2(t−), . . . ,XNt,r (t−)},
so we have P-a.s.{

X1(r),X2(r), . . .
}⊆

⋃
1≤i≤Nt,r

B
(
Xi(t−),Ch(r − t)

)
.

For the given t ∈ [0, T ), P-a.s.

Xi(t) = Xi(t−) for any i ∈ [∞],
where Xi(0−) ≡ Xi(0), so for any r ∈ ST ∩ (t, t + θ ], we have P-a.s.

{
X1(r),X2(r), . . .

}⊆
⋃

1≤i≤Nt,r

B
(
Xi(t),Ch(r − t)

)
. (22)

Apply Lemma 3.1, for the given t ∈ [0, T ), P-a.s.{
X1(t),X2(t), . . . ,XNt,r (t)

} ⊆ suppX(t).

It follows from (22) that{
X1(r),X2(r), . . .

}⊆ B
(
suppX(t),Ch(r − t)

)
.

For all r ∈ ST ∩ (t, t + θ ], we have P-a.s.

X(n)(r) ≡ 1

n

n∑
i=1

δXi(r) → X(r).

Clearly,

suppX(n)(r) ⊆ {
X1(r),X2(r), . . .

}⊆ B
(
suppX(t),Ch(r − t)

)
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for all n, which implies

suppX(r) ⊆ B
(
suppX(t),Ch(r − t)

)
. (23)

Then for any s satisfying t < s ≤ (t + θ/2)∧T , we can choose a sequence (sl)l≥1 ⊆ ST ∩ (t, t + θ ] such that sl ↓ s.
It follows from the right continuity of X and Lemma 5.5 that

suppX(s) ⊆
⋂
m≥1

⋃
l≥m

suppX(sl).

By (23), we have

suppX(sl) ⊆ B
(
suppX(t),Ch(sl − t)

)
for all l. Consequently, for any t < s ≤ (t + θ/2) ∧ T ,

suppX(s) ⊆
⋂
m≥1

⋃
l≥m

B
(
suppX(t),Ch(sl − t)

)

=
⋂
m≥1

B
(
suppX(t),Ch(sm − t)

)

= B
(
suppX(t),Ch(s − t)

)
.

Therefore, given any fixed t ≥ 0, there exist a positive random variable θ ≡ θ(t, d,α) and a constant C ≡ C(d,α)

such that for any Δt with 0 < Δt ≤ θ , P-a.s.

suppX(t + Δt) ⊆ B
(
suppX(t),Ch(Δt)

) = B
(
suppX(t),C

√
Δt log(1/Δt)

)
. �

Remark 5.6. The constants C ≡ C(d,α) in Theorems 4.1 and 4.2 are the same. From the proofs of Lemma 5.2,
Theorems 4.1 and 4.2, it is clear that

C(d,α) = 2C4(d,α) + 2C5(d,α)

= 2C4(d,α) + 2C4(d,α)

∞∑
k=1

√
2−k+1k

= 2C1(d,α)

(
1 +

∞∑
l=1

√
2−2l+1l

)(
1 +

∞∑
k=1

√
2−k+1k

)
,

where C1(d,α) is any constant satisfying C1(d,α) >
√

2d(3/α + 1).

Lemma 5.7. Under Assumption I, we have P-a.s.

max
1≤k≤2nT

Nn,k < 4n/αn2/α

for n large enough.

Proof. Under Assumption I, there exists a positive constant C such that

ETm ≤ Cm−α (24)

for m large enough.
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Given n, T
n,k

4n/αn2/α ,1 ≤ k ≤ 2nT are i.i.d. random variables following the same distribution as T4n/αn2/α ∧ 2−n.

Consequently, Nn,k,1 ≤ k ≤ 2nT are also i.i.d. random variables. Choosing 4n/αn2/α large enough, by (24) we have

P

(
max

1≤k≤2nT
Nn,k ≥ 4n/αn2/α

)
= 1 −

∏
1≤k≤2nT

(
1 − P

(
Nn,k ≥ 4n/αn2/α

))

≤ 2nT P
(
Nn,1 ≥ 4n/αn2/α

)
= 2nT P

(
T4n/αn2/α ≥ 2−n

)
≤ 2nTET

n,k

4n/αn2/α /2−n

≤ CT n−2,

which is summable with respect to n. Applying Borel–Cantelli lemma, we then have P-a.s.

max
1≤k≤2nT

Nn,k < 4n/αn2/α

for n large enough. �

Proof of Theorem 4.3. Under Assumption I, by Lemma 5.7 we have P-a.s.

max
1≤k≤2nT

Nn,k < 4n/αn2/α (25)

for n large enough.
Given any positive constants σ and T with 0 < σ < T , we first show that R([σ,T )) is a.s. compact. Applying

Theorem 4.1, there exist a positive random variable θ ≡ θ(T , d,α) > 0 and a constant C ≡ C(d,α) such that P-a.s.
for all r, s ∈ ST satisfying 0 < s − r ≤ θ ,

H(r, s) ≤ Ch(s − r).

For the given σ , choose n big enough so that 2−n ≤ θ ∧ σ and (25) holds. For any 1 ≤ k ≤ 2nT and t ∈ ST ∩
[k2−n, (k + 1)2−n ∧ T ), we have

H
(
(k − 1)2−n, t

) ≤ H
(
(k − 1)2−n, k2−n

)+ H
(
k2−n, t

)
≤ 2Ch

(
2−n

)
.

It follows from the lookdown construction and Lemma 3.2 that

suppX(t) ⊆
⋃

1≤i≤N(k−1)2−n,t

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))
.

By (25) we have

N(k−1)2−n,t ≤ N(k−1)2−n,k2−n = Nn,k < 4n/αn2/α.

Consequently,

suppX(t) ⊆
⋃

1≤i<4n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))
. (26)

For general t ∈ [k2−n, (k + 1)2−n ∧ T ). We can select a decreasing sequence(
t
n,k
l

)
l≥1 ⊆ ST ∩ [

k2−n, (k + 1)2−n ∧ T
)

satisfying t
n,k
l ↓ t as l → ∞.
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Since the Λ-Fleming–Viot process X is right continuous, it follows from Lemma 5.5 that

suppX(t) ⊆
⋂
m≥1

⋃
l≥m

suppX
(
t
n,k
l

)
.

By (26), we have

suppX
(
t
n,k
l

)⊆
⋃

1≤i<4n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))
.

Therefore, for any t ∈ [k2−n, (k + 1)2−n ∧ T ), we also have

suppX(t) ⊆
⋃

1≤i<4n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))
, (27)

i.e., R([k2−n, (k + 1)2−n ∧ T )) is contained in at most �4n/αn2/α� closed balls each of which has radius bounded
from above by 2Ch(2−n). Then

R
([σ,T )

) ⊆ R
([

2−n, T
))

⊆
⋃

1≤k≤2nT

R
([

k2−n, (k + 1)2−n ∧ T
))

⊆
⋃

1≤k≤2nT

⋃
1≤i<4n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))
, (28)

where the right-hand side is the union of at most �2nT � × �4n/αn2/α� closed and bounded balls. So R([σ,T )) is
compact.

Consequently, the random measure X(t) has compact support for all times t ∈ [σ,T ) simultaneously. Let σ = 1/T

and T → ∞. Then the random measure X(t) has compact support for all times t ∈ (0,∞) simultaneously.
Further, given that suppX(0) is compact, we can adapt the above-mentioned strategy to find a finite cover for

R([0, T )). Applying Theorem 4.2, for n large enough, we have

R
([

0,2−n
))=

⋃
t∈[0,2−n)

suppX(t) ⊆ B
(
suppX(0),Ch

(
2−n

))
.

Then

R
([0, T )

) ⊆
⋃

0≤k≤2nT

R
([

k2−n, (k + 1)2−n ∧ T
))

⊆ B
(
suppX(0),Ch

(
2−n

))∪
( ⋃

1≤k≤2nT

⋃
1≤i<4n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

)))
,

where the right-hand side is compact given the compactness of suppX(0). So, R([0, T )) is compact.
Note that R([0, T )) is increasing with respect to T . Let T → ∞. It is clear that R([0, t)) is compact for all t > 0

P-a.s. �

5.3. Upper bounds on Hausdorff dimensions for the supports and ranges

Given any Λ-coalescent (Π(t))t≥0 with Π(0) = 0[∞], recall that

Tm ≡ inf
{
t ≥ 0: #Π(t) ≤ m

}
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with the convention inf∅ = ∞. (Πn(t))t≥0 is its restriction to [n] with Πn(0) = 0[n]. For any n ≥ m, let

T n
m ≡ inf

{
t ≥ 0: #Πn(t) ≤ m

}
with the convention inf∅ = ∞.

For any x > 0, write T n
x ≡ T n�x� and Tx ≡ T�x�.

Let (T̂n)n≥2 be independent random variables such that T̂n has the same distribution as T n
n−1.

Lemma 5.8. For any n > m, T n
m is stochastically less than

∑n
i=m+1 T̂i , i.e., for any t > 0,

P
(
T n

m ≥ t
)≤ P

(
n∑

i=m+1

T̂i ≥ t

)
. (29)

Proof. We use a coupling argument by defining an auxiliary [n] × [n]-valued continuous time Markov chain (Y1, Y2)

describing the following urn model. Intuitively, there are balls in an urn of color either white or black. Let Y1(t) and
Y2(t) represent the number of white and black balls at time t , respectively.

After each independent exponential sampling time a random number of balls are taken out of the urn and then
immediately replaced with certain white or black colored balls so that the total number of balls in the urn decreases
exactly by one overall afterwards. More precisely, given that there are w white balls and b black balls in the urn, at
rate λw+b,k each group of k balls with k ≤ w + b is independently removed. Suppose that w′ white balls and k − w′
black balls have been chosen and removed at time t , we then immediately return k − 1 balls to the urn so that among
the returned balls, either one is white and all the others are black if w′ > 0 or all of them are black if w′ = 0. At such
a sampling time t we define{

Y1(t) = w − w′ + 1 and Y2(t) = b + w′ − 2 = w + b − 1 − Y1(t), if w′ > 0;
Y1(t) = w and Y2(t) = b − 1, if w′ = 0,

and the value of (Y1, Y2) keeps unchanged between the sampling times. The above-mentioned procedure continues
until there is one white ball left in the urn. Suppose that there are n white balls and no black balls in the urn initially,
i.e., (Y1(0), Y2(0)) = (n,0).

Observe that Y1 follows the law of the Λ-coalescent starting with n-blocks and (T̂i)i≤n has the same distribution
as the inter-decreasing times for process Y1 + Y2. Plainly,

inf
{
t : Y1(t) ≤ m

}≤ inf
{
t : Y1(t) + Y2(t) ≤ m

}
.

Inequality (29) thus follows. �

The estimate in Lemma 5.7 is not enough for the proofs of Theorems 4.5 and 4.6. A sharper estimate is obtained
in the following result under a stronger condition.

Lemma 5.9. Suppose that Condition A holds. We have P-a.s.

max
1≤k≤2nT

Nn,k < 2n/αn2/α (30)

for n large enough.

Proof. Under Condition A, there exists a positive constant C such that for n large enough and for any b > 2n/αn2/α ,

λb ≥ (
C
⌊

2n/αn2/α
⌋−α)−1

> 2n+1n. (31)

Letting n → ∞ in (29), for any t > 0 and m ∈ [∞] we have

P(Tm ≥ t) ≤ P

(∑
i>m

T̂i ≥ t

)
. (32)
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With estimate (32) we can find a sharper uniform upper bound for the maximal number of ancestors as follows:

P

(
max

1≤k≤2nT
Nn,k ≥ 2n/αn2/α

)
= 1 −

∏
1≤k≤2nT

(
1 − P

(
Nn,k ≥ 2n/αn2/α

))

≤ 2nT P
(
Nn,1 ≥ 2n/αn2/α

)
≤ 2nT P

(
T2n/αn2/α ≥ 2−n

)
≤ 2nT P

( ∑
i>2n/αn2/α

T̂i ≥ 2−n

)

≤ 2nT e−n
E exp

( ∑
i>2n/αn2/α

2nnT̂i

)

= 2nT e−n
∏

i>2n/αn2/α

E exp
(
2nnT̂i

)
,

where T̂i follows an exponential distribution with parameter λi . It follows from (31) that when n is large enough,
λi > 2nn for any i > 2n/αn2/α , which guarantees the existence of moment generating function for T̂i . As a result,

P

(
max

1≤k≤2nT
Nn,k ≥ 2n/αn2/α

)
≤ 2nT e−n

∏
i>2n/αn2/α

λi

λi − n2n

≡ 2nT e−nQ.

Then

lnQ =
∑

i>2n/αn2/α

ln

(
1 + n2n

λi − n2n

)

≤
∑

i>2n/αn2/α

n2n

λi − n2n

≤ n2n
∑

i>2n/αn2/α

1

λi − λi/2

≤ n2n+1
∑

i>2n/αn2/α

1

λi

.

We have by Condition A for n large enough,

lnQ ≤ n2n+1C
(⌊

2n/αn2/α
⌋)−α ≤ n2n+1C

(
2n/αn2/α/2

)−α = 2α+1Cn−1.

Then ∑
n

P

(
max

1≤k≤2nT
Nn,k ≥ 2n/αn2/α

)
< ∞,

which, by the Borel–Cantelli lemma, implies that P-a.s.

max
1≤k≤2nT

Nn,k < 2n/αn2/α

for n large enough. �
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Proof of Theorem 4.5. Given any 0 < σ < T , we first consider the uniform upper bound on Hausdorff dimensions
for suppX(t) at all times t ∈ [σ,T ). We adapt the same idea as the proof of Theorem 4.3 to find a cover for the support
at any time t ∈ [σ,T ). Since we have a sharper estimate for Nn,k under Condition A, for n large enough, (27) in the
proof of Theorem 4.3 can be replaced by

suppX(t) ⊆
⋃

1≤i<2n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))

for any t ∈ [k2−n, (k + 1)2−n ∧ T ) and 1 ≤ k ≤ 2nT , i.e., for any t ∈ [σ,T ) ⊆ [2−n, T ), suppX(t) is contained in at
most �2n/αn2/α� closed balls each of which has a radius bounded from above by 2Ch(2−n).

For any ε > 0 we have

lim
n→∞

⌊
2n/αn2/α

⌋(
2Ch

(
2−n

))(2+ε)/α ≤ lim
n→∞(2C)(2+ε)/α2n/αn2/α

(
h
(
2−n

))(2+ε)/α

= lim
n→∞(2C)(2+ε)/α(log 2)(2+ε)/(2α)2−(nε)/(2α)n(6+ε)/(2α)

= 0,

which implies H(2+ε)/α(suppX(t)) = 0. Since ε is arbitrary, the Hausdorff dimensions for suppX(t) at all times
t ∈ [σ,T ) are uniformly bounded from above by 2/α.

Finally, let σ ≡ 1/T and T → ∞. The Hausdorff dimension for suppX(t) has uniform upper bound 2/α at all
positive times simultaneously. �

Proof of Theorem 4.6. Given any 0 < δ < T , we also follow the proof of Theorem 4.3 to find a finite cover for
R([δ, T )). Choose n large enough such that 2−n ≤ θ ∧ δ and (30) holds. Similarly as (28) in the proof of Theorem 4.3,
we have

R
([δ, T )

) ⊆ R
([

2−n, T
))

⊆
⋃

1≤k≤2nT

R
([

k2−n, (k + 1)2−n ∧ T
))

⊆
⋃

1≤k≤2nT

⋃
1≤i<2n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))
,

which implies that R([δ, T )) is contained in at most �2nT � × �2n/αn2/α� closed balls, each of which has radius
bounded from above by 2Ch(2−n).

For any ε > 0, it follows that

lim
n→∞

⌊
2nT

⌋× ⌊
2n/αn2/α

⌋(
2Ch

(
2−n

))2/α+2+ε ≤ C(T ,d,α, ε) lim
n→∞ 2−nε/2n3/α+1+ε/2 = 0.

Since ε is arbitrary, the Hausdorff dimension for the range R([δ, T )) is bounded from above by 2/α + 2. �

Proof of Corollary 4.9. With initial value δ0, applying Theorem 4.2, it is clear that almost surely

R
([

0,2−n
))⊆ B

(
0,Ch

(
2−n

))
for n large enough. From the proof of Theorem 4.6, we have

R
([0, T )

) ⊆ R
([

0,2−n
))∪R

([
2−n, T

))
⊆ B

(
0,Ch

(
2−n

))∪
⋃

1≤k≤2nT

⋃
1≤i<2n/αn2/α

B
(
Xi

(
(k − 1)2−n−)

,2Ch
(
2−n

))

for n large enough.



1100 H. Liu and X. Zhou

Therefore, R([0, T )) is contained in at most �2nT �×�2n/αn2/α�+1 closed balls, each of which has radius bounded
from above by 2Ch(2−n).

For any ε > 0, we have

lim
n→∞

(⌊
2nT

⌋× ⌊
2n/αn2/α

⌋+ 1
)(

2Ch
(
2−n

))2/α+2+ε = 0.

Since ε is arbitrary, the Hausdorff dimension for the range R([0, T )) is bounded from above by 2/α + 2. �

Proof of Proposition 4.14. Let {ti} be any dense subset of [0, T ]. Combining the proofs for Theorem 4.1 and Theo-
rem 4.2, there exist θ ≡ θ(T , d,α) < e−1 and C ≡ C(d,α) such that P-a.s.

suppX(ti + Δt) ⊆ B
(
suppX(ti),Ch(Δt)

)
for all i and 0 < Δt ≤ θ ∧ (T − ti ). Then for any t ∈ [0, T ), there exists a subsequence (tij ) with tij ↓ t such that given
any n > 0,

suppX(t + Δt) = suppX
(
tij + Δt − (tij − t)

)
⊆ B

(
suppX(tij ),Ch(Δt)

)
⊆ B

(
R
([t, t + 1/n)

)
,Ch(Δt)

)
for 0 < Δt ≤ θ ∧ (T − t) and j large enough. So,

suppX(t + Δt) ⊆ B
(
St ,Ch(Δt)

)
since n is arbitrary. �
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