Nous considérons un modèle de marches aléatoires en milieu aléatoire ayant pour sommets un sous-ensemble aléatoire de
We consider a model for random walks on random environments (RWRE) with a random subset of
Mots-clés : discrete point processes, random walk in random environment
@article{AIHPB_2015__51_2_727_0, author = {Berger, Noam and Rosenthal, Ron}, title = {Random walks on discrete point processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {727--755}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/13-AIHP593}, mrnumber = {3335023}, zbl = {1315.60115}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP593/} }
TY - JOUR AU - Berger, Noam AU - Rosenthal, Ron TI - Random walks on discrete point processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 727 EP - 755 VL - 51 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP593/ DO - 10.1214/13-AIHP593 LA - en ID - AIHPB_2015__51_2_727_0 ER -
%0 Journal Article %A Berger, Noam %A Rosenthal, Ron %T Random walks on discrete point processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 727-755 %V 51 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP593/ %R 10.1214/13-AIHP593 %G en %F AIHPB_2015__51_2_727_0
Berger, Noam; Rosenthal, Ron. Random walks on discrete point processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 727-755. doi : 10.1214/13-AIHP593. https://www.numdam.org/articles/10.1214/13-AIHP593/
[1] Random walks on supercritical percolation clusters. Ann. Probab. 32 (4) (2004) 3024–3084. | MR | Zbl
.[2] Transience, recurrence and critical behavior for long-range percolation. Comm. Math. Phys. 226 (3) (2002) 531–558. | MR | Zbl
.[3] Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (1–2) (2007) 83–120. | MR | Zbl
and .[4] Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2) (2008) 374–392. | Numdam | MR | Zbl
, , and .[5] Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (49) (2007) 1323–1348. | MR | Zbl
and .[6] Lingering random walks in random environment on a strip. Comm. Math. Phys. 278 (1) (2008) 253–288. | MR | Zbl
and .[7] Ten Lectures on Random Media. DMV Seminar 32. Birkhäuser, Basel, 2002. | DOI | MR | Zbl
and .
[8] On some random walks on
[9] Recurrence and transience for long range reversible random walks on a random point process. Electron. J. Probab. 14 (90) (2009) 2580–2616. | MR | Zbl
, and .[10] Simple random walk on long range percolation clusters I: Heat kernel bounds. Probab. Theory Related Fields 154 (3–4) (2012) 753–786. | MR | Zbl
and .[11] Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104 (4) (1996) 467–482. | MR | Zbl
and .[12] Random Walks and Electric Networks. Carus Mathematical Monographs 22. Mathematical Association of America, Washington, DC, 1984. | MR | Zbl
and .[13] Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1996. | MR | Zbl
.[14] Random Walks and Random Environments. Vol. 2. Random Environments. Oxford Univ. Press, New York, 1996. | MR | Zbl
.[15] Recurrence and transience criteria for random walk in a random environment. Ann. Probab. 12 (2) (1984) 529–560. | MR | Zbl
.[16] Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 (1) (1986) 1–19. | MR | Zbl
and .[17] Probability on Trees and Networks. Cambridge Univ. Press, Cambridge, in preparation, 2015. Current version available at http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html.
and .[18] Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2085) (2007) 2287–2307. | MR | Zbl
and .[19] Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields 133 (2) (2005) 245–266. | MR | Zbl
and .[20] A generalization of Birkhoff’s pointwise ergodic theorem. Acta Math. 173 (1) (1994) 135–154. | MR | Zbl
and .[21] Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. | DOI | MR | Zbl
.[22] Random walk on discrete point processes. Preprint, 2010. Available at arXiv:1005.1398.
.[23] Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2) (2004) 219–244. | MR | Zbl
and .[24] Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 (3) (2010) 2039–2087. | MR | Zbl
.[25] Random walks in a random environment. Proc. Indian Acad. Sci. Math. Sci. 114 (4) (2004) 309–318. | MR | Zbl
.[26] Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189–312. Springer, Berlin, 2004. | MR | Zbl
.Cité par Sources :