Anomalous heat-kernel decay for random walk among bounded random conductances
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 374-392.

On considère la marche aléatoire aux plus proches voisins dans d, d2, dont les transitions sont données par un champ de conductances aléatoires bornées ωxy0,1. La loi de conductance est iid sur les arêtes, et telle que la probabilité que ωxy>0 soit supérieure au seuil de percolation (par arêtes) sur d. Pour les environnements dont l’origine est connectée à l’infini à l’aide d’arêtes à conductances positives, on étudie l’asymptotique de la probabilité de retour à l’instant 2n:𝖯ω2n(0,0). On prouve que 𝖯ω2n(0,0) est borné par Cn-d/2 pour d=2,3 (où C est une constante aléatoire) alors que c’est en o(n-2) pour d5 et O(n-2logn) pour d=4. En construisant des exemples dont les noyaux de la chaleur décroissent anormalement en avoisinant 1/n2, on peut prouver que la borne o(n-2) est optimale pour d5. On parvient également à construire des environnements naturels dépendants de n qui présentent le facteur logn supplémentaire en dimension d=4.

We consider the nearest-neighbor simple random walk on d, d2, driven by a field of bounded random conductances ωxy0,1. The conductance law is i.i.d. subject to the condition that the probability of ωxy>0 exceeds the threshold for bond percolation on d. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the 2n-step return probability 𝖯ω2n(0,0). We prove that 𝖯ω2n(0,0) is bounded by a random constant times n-d/2 in d=2,3, while it is o(n-2) in d5 and O(n-2logn) in d=4. By producing examples with anomalous heat-kernel decay approaching 1/n2, we prove that the o(n-2) bound in d5 is the best possible. We also construct natural n-dependent environments that exhibit the extra logn factor in d=4.

DOI : 10.1214/07-AIHP126
Classification : 60F05, 60J45, 82C41
Mots-clés : heat kernel, random conductance model, random walk, percolation, isoperimetry
@article{AIHPB_2008__44_2_374_0,
     author = {Berger, N. and Biskup, M. and Hoffman, C. E. and Kozma, G.},
     title = {Anomalous heat-kernel decay for random walk among bounded random conductances},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {374--392},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {2},
     year = {2008},
     doi = {10.1214/07-AIHP126},
     mrnumber = {2446329},
     zbl = {1187.60034},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/07-AIHP126/}
}
TY  - JOUR
AU  - Berger, N.
AU  - Biskup, M.
AU  - Hoffman, C. E.
AU  - Kozma, G.
TI  - Anomalous heat-kernel decay for random walk among bounded random conductances
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2008
SP  - 374
EP  - 392
VL  - 44
IS  - 2
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/07-AIHP126/
DO  - 10.1214/07-AIHP126
LA  - en
ID  - AIHPB_2008__44_2_374_0
ER  - 
%0 Journal Article
%A Berger, N.
%A Biskup, M.
%A Hoffman, C. E.
%A Kozma, G.
%T Anomalous heat-kernel decay for random walk among bounded random conductances
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2008
%P 374-392
%V 44
%N 2
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/07-AIHP126/
%R 10.1214/07-AIHP126
%G en
%F AIHPB_2008__44_2_374_0
Berger, N.; Biskup, M.; Hoffman, C. E.; Kozma, G. Anomalous heat-kernel decay for random walk among bounded random conductances. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 374-392. doi : 10.1214/07-AIHP126. https://www.numdam.org/articles/10.1214/07-AIHP126/

[1] P. Antal and A. Pisztora. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036-1048. | MR | Zbl

[2] M. T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004) 3024-3084. | MR | Zbl

[3] I. Benjamini and E. Mossel. On the mixing time of a simple random walk on the super critical percolation cluster. Probab. Theory Related Fields 125 (2003) 408-420. | MR | Zbl

[4] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83-120. | MR | Zbl

[5] M. Biskup and T. Prescott. Functional CLT for random walk among bounded conductances. Electron. J. Probab. 12 (2007) 1323-1348. | MR | Zbl

[6] E. A. Carlen, S. Kusuoka and D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245-287. | Numdam | MR | Zbl

[7] T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15 (1999) 181-232. | MR | Zbl

[8] A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick. Invariance principle for reversible Markov processes with application to diffusion in the percolation regime. In Particle Systems, Random Media and Large Deviations (Brunswick, Maine) 71-85. Contemp. Math. 41. Amer. Math. Soc., Providence, RI, 1985. | MR | Zbl

[9] A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Statist. Phys. 55 (1989) 787-855. | MR | Zbl

[10] L. R. G. Fontes and P. Mathieu. On symmetric random walks with random conductances on ℤd. Probab. Theory Related Fields 134 (2006) 565-602. | MR | Zbl

[11] S. Goel, R. Montenegro and P. Tetali. Mixing time bounds via the spectral profile. Electron. J. Probab. 11 (2006) 1-26. | MR | Zbl

[12] A. Grigor'Yan. Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana 10 (1994) 395-452. | MR | Zbl

[13] G. R. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. | MR

[14] G. R. Grimmett, H. Kesten and Y. Zhang. Random walk on the infinite cluster of the percolation model. Probab. Theory Related Fields 96 (1993) 33-44. | MR | Zbl

[15] D. Heicklen and C. Hoffman. Return probabilities of a simple random walk on percolation clusters. Electron. J. Probab. 10 (2005) 250-302 (electronic). | MR | Zbl

[16] C. Kipnis and S. R. S. Varadhan. A central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104 (1986) 1-19. | MR | Zbl

[17] B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields 133 (2005) 245-266. | MR | Zbl

[18] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Statist. Phys. To appear. | MR

[19] P. Mathieu and A. L. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287-2307. | MR | Zbl

[20] P. Mathieu and E. Remy. Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004) 100-128. | MR | Zbl

[21] G. Pete. A note on percolation on ℤd: Isoperimetric profile via exponential cluster repulsion. Preprint, 2007. | MR

[22] C. Rau. Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation, Bull. Soc. Math. France. To appear. | Numdam | MR | Zbl

[23] V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | MR | Zbl

[24] N. T. Varopoulos. Isoperimetric inequalities and Markov chains. J. Funct. Anal. 63 (1985) 215-239. | MR | Zbl

Cité par Sources :