Il est connu qu’une mesure de probabilité sur le cercle satisfait pour toute fonction et pour tout (ou pour un ), si et seulement si est strictement apériodique (i.e. pour tout non nul dans ). Nous étudions ici la convergence presque partout de pour , . Nous montrons une condition nécessaire et suffisante portant sur les coefficients de Fourier-Stieltjes de pour la propriété de “balayage fort” (existence d’un borélien tel que p.p. et p.p.). Les résultats sont étendus aux groupes abéliens compacts généraux de mesure de Haar . Comme corollaire nous obtenons la dichotomie suivante : pour strictement apériodique, soit p.p. pour tout et toute fonction , soit vérifie la propriété de balayage fort.
It is well-known that a probability measure on the circle satisfies for every , every (some) , if and only if for every non-zero ( is strictly aperiodic). In this paper we study the a.e. convergence of for every whenever . We prove a necessary and sufficient condition, in terms of the Fourier-Stieltjes coefficients of , for the strong sweeping out property (existence of a Borel set with a.e. and a.e.). The results are extended to general compact Abelian groups with Haar measure , and as a corollary we obtain the dichotomy: for strictly aperiodic, either a.e. for every and every , or has the strong sweeping out property.
Mots clés : convolution powers, almost everywhere convergence, sweeping out, strictly aperiodic probabilities
@article{AIHPB_2013__49_2_550_0, author = {Conze, Jean-Pierre and Lin, Michael}, title = {Almost everywhere convergence of convolution powers on compact abelian groups}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {550--568}, publisher = {Gauthier-Villars}, volume = {49}, number = {2}, year = {2013}, doi = {10.1214/11-AIHP468}, mrnumber = {3088381}, zbl = {1281.37005}, language = {en}, url = {http://www.numdam.org/articles/10.1214/11-AIHP468/} }
TY - JOUR AU - Conze, Jean-Pierre AU - Lin, Michael TI - Almost everywhere convergence of convolution powers on compact abelian groups JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 550 EP - 568 VL - 49 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/11-AIHP468/ DO - 10.1214/11-AIHP468 LA - en ID - AIHPB_2013__49_2_550_0 ER -
%0 Journal Article %A Conze, Jean-Pierre %A Lin, Michael %T Almost everywhere convergence of convolution powers on compact abelian groups %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 550-568 %V 49 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/11-AIHP468/ %R 10.1214/11-AIHP468 %G en %F AIHPB_2013__49_2_550_0
Conze, Jean-Pierre; Lin, Michael. Almost everywhere convergence of convolution powers on compact abelian groups. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 550-568. doi : 10.1214/11-AIHP468. http://www.numdam.org/articles/10.1214/11-AIHP468/
[1] A spectral radius formula for the Fourier transform on compact groups and applications to random walks. Adv. Math. 188 (2004) 425-443. | MR | Zbl
and .[2] Speed of convergence of the -fold convolution of a probability measure on a compact group. Z. Wahrsch. Verw. Gebiete 25 (1972) 1-10. | MR | Zbl
.[3] A Banach principle for . Adv. Math. 120 (1996) 155-172. | MR | Zbl
and .[4] Almost everywhere convergence of powers. In Almost Everywhere Convergence 99-120. G. Edgar and L. Sucheston (Eds). Academic Press, Boston, MA, 1989. | MR | Zbl
, and .[5] Almost everywhere convergence of convolution powers. Ergodic Theory Dynam. Systems 14 (1994) 415-432. | MR | Zbl
, and .[6] Successive conditional expectations of an integrable function. Ann. Math. Statist. 33 (1962) 887-893. | MR | Zbl
.[7] Iterates of a product of conditional expectation operators. J. Funct. Anal. 242 (2007) 658-668. | MR | Zbl
.[8] Counterexamples in ergodic theory and number theory. Math. Ann. 245 (1979) 185-197. | MR | Zbl
and .[9] Variance bounding Markov chains, -uniform mean ergodicity and the CLT. Stoch. Dyn. 11 (2011) 81-94. | MR | Zbl
and .[10] An Introduction to the Theory of Numbers, 5th edition. Clarendon Press, New York, 1979. | JFM | MR | Zbl
and .[11] Pointwise convergence of the iterates of a Harris-recurrent Markov operator. Israel J. Math. 33 (1979) 177-180. | MR | Zbl
.[12] Ergodic theorems for convolutions of a measure on a group. Illinois J. Math. 38 (1994) 521-553. | MR | Zbl
, and .[13] Ergodic Theorems. De Gruyter, Berlin, 1985. | MR | Zbl
.[14] The uniform zero-two law for positive operators in Banach lattices. Studia Math. 131 (1998) 149-153. | MR | Zbl
.[15] A remark on almost everywhere convergence of convolution powers. Illinois J. Math. 43 (1999) 465-479. | MR | Zbl
.[16] The strong sweeping out property for convolution powers. Ergodic Theory Dynam. Systems 21 (2001) 115-119. | MR | Zbl
.[17] On the pointwise behavior of iterates of a self-adjoint operator. J. Math. Mech. 18 (1968) 473-477. | MR | Zbl
.[18] Markov chains, skew products and ergodic theorems for “general” dynamic systems. Theory Probab. Appl. 10 (1965) 499-504. | MR | Zbl
.[19] Measures with real spectra. Invent. Math. 98 (1989) 311-330. | MR | Zbl
.[20] Ergodic group actions. Arch. Math. (Basel) 47 (1986) 263-269. | MR | Zbl
.[21] Markov Processes. Structure and Asymptotic Behavior. Springer, Berlin, 1971. | MR | Zbl
.[22] Norm convergence of random walks on compact hypergroups. Math. Z. 214 (1993) 415-423. | MR | Zbl
and .[23] An “Alternierende Verfahren” for general positive operators. Bull. Amer. Math. Soc. 68 (1962) 95-102. | MR | Zbl
.[24] Fourier Analysis on Groups. Interscience, New York, 1962. | MR | Zbl
.[25] On the maximal ergodic theorem. Proc. Natl. Acad. Sci. USA 47 (1961) 1894-1897. | MR | Zbl
.[26] Sets of multiplicity in locally compact Abelian groups. Ann. Inst. Fourier 16 (1966) 123-158. | Numdam | MR | Zbl
.Cité par Sources :