Dans tout groupe abélien localement compact , il existe une mesure de Radon dont la transformée de Fourier tend vers zéro à l’infini et dont le support engendre dans un sous-groupe de mesure de Haar nulle.
@article{AIF_1966__16_2_123_0, author = {Varopoulos, Nicolas Th.}, title = {Sets of multiplicity in locally compact abelian groups}, journal = {Annales de l'Institut Fourier}, pages = {123--158}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {16}, number = {2}, year = {1966}, doi = {10.5802/aif.238}, mrnumber = {35 #3379}, zbl = {0145.03501}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.238/} }
TY - JOUR AU - Varopoulos, Nicolas Th. TI - Sets of multiplicity in locally compact abelian groups JO - Annales de l'Institut Fourier PY - 1966 SP - 123 EP - 158 VL - 16 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.238/ DO - 10.5802/aif.238 LA - en ID - AIF_1966__16_2_123_0 ER -
Varopoulos, Nicolas Th. Sets of multiplicity in locally compact abelian groups. Annales de l'Institut Fourier, Tome 16 (1966) no. 2, pp. 123-158. doi : 10.5802/aif.238. http://www.numdam.org/articles/10.5802/aif.238/
[1] Livre VI Integration.
,[2] Michigan Math. J., 5, (1958), 149-158. | Zbl
,[3] Infinite Abelian Groups, The University of Michigan press.
,[4] Probability Theory, Van Nostrand. | Zbl
,[5] Fourier Stieltjes transforms of measures on independant sets, Bull. Amer. Math. Soc., 66 (1960). | Zbl
,[6] Fourier analysis on groups, Interscience tract, 12. | MR | Zbl
,[7] On sets of multiplicity for trigonometric series, Amer. Journ. of Math., 64 (1942), 531-538. | MR | Zbl
,[8] The functions that operate on B0 (Г) of a discrete group, Bull. Soc. Math. France, 93 (1965) (to appear). | Numdam | Zbl
,[9] Sur les mesures de Radon d'un groupe localement compact abélien, C.R. Acad. Sc. Paris, t. 260, 1059-1062 (1965). | Zbl
,Cité par Sources :