Sets of multiplicity in locally compact abelian groups
Annales de l'Institut Fourier, Tome 16 (1966) no. 2, pp. 123-158.

Dans tout groupe abélien localement compact G, il existe une mesure de Radon dont la transformée de Fourier tend vers zéro à l’infini et dont le support engendre dans G un sous-groupe de mesure de Haar nulle.

@article{AIF_1966__16_2_123_0,
     author = {Varopoulos, Nicolas Th.},
     title = {Sets of multiplicity in locally compact abelian groups},
     journal = {Annales de l'Institut Fourier},
     pages = {123--158},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {16},
     number = {2},
     year = {1966},
     doi = {10.5802/aif.238},
     mrnumber = {35 #3379},
     zbl = {0145.03501},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.238/}
}
TY  - JOUR
AU  - Varopoulos, Nicolas Th.
TI  - Sets of multiplicity in locally compact abelian groups
JO  - Annales de l'Institut Fourier
PY  - 1966
SP  - 123
EP  - 158
VL  - 16
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.238/
DO  - 10.5802/aif.238
LA  - en
ID  - AIF_1966__16_2_123_0
ER  - 
%0 Journal Article
%A Varopoulos, Nicolas Th.
%T Sets of multiplicity in locally compact abelian groups
%J Annales de l'Institut Fourier
%D 1966
%P 123-158
%V 16
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.238/
%R 10.5802/aif.238
%G en
%F AIF_1966__16_2_123_0
Varopoulos, Nicolas Th. Sets of multiplicity in locally compact abelian groups. Annales de l'Institut Fourier, Tome 16 (1966) no. 2, pp. 123-158. doi : 10.5802/aif.238. http://www.numdam.org/articles/10.5802/aif.238/

[1] N. Bourbaki, Livre VI Integration.

[2] E. Hewitt, Michigan Math. J., 5, (1958), 149-158. | Zbl

[3] I. Kaplanski, Infinite Abelian Groups, The University of Michigan press.

[4] M. Loève, Probability Theory, Van Nostrand. | Zbl

[5] W. Rudin, Fourier Stieltjes transforms of measures on independant sets, Bull. Amer. Math. Soc., 66 (1960). | Zbl

[6] W. Rudin, Fourier analysis on groups, Interscience tract, 12. | MR | Zbl

[7] R. Salem, On sets of multiplicity for trigonometric series, Amer. Journ. of Math., 64 (1942), 531-538. | MR | Zbl

[8] N. Th. Varopoulos, The functions that operate on B0 (Г) of a discrete group, Bull. Soc. Math. France, 93 (1965) (to appear). | Numdam | Zbl

[9] N. Th. Varopoulos, Sur les mesures de Radon d'un groupe localement compact abélien, C.R. Acad. Sc. Paris, t. 260, 1059-1062 (1965). | Zbl

Cité par Sources :