On the invariant measure of the random difference equation X n =A n X n-1 +B n in the critical case
Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 2, pp. 377-395.

Nous considérons le modèle autorégressif sur ℝd défini par récurrence par l'équation stochastique Xn = AnXn-1 + Bn, où {(Bn, An)} sont des variables aléatoires à valeurs dans ℝd × ℝ+, indépendantes et de même loi. Le cas critique, c'est-à-dire lorsque 𝔼[ 1 ]=0 , a été étudié par Babillot, Bougerol et Elie, qui ont montré qu'il existe une et une seule mesure de Radon ν invariante pour la chaîne de Markov {Xn}. Dans ce papier nous démontrons que la mesure ν, convenablement dilatée, converge faiblement vers une mesure homogène sur ℝd ∖ {0}.

We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn-1 + Bn, where {(Bn, An)} are i.i.d. random variables valued in ℝd × ℝ+. The critical case, when 𝔼[logA 1 ]=0 , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measure ν for the Markov chain {Xn}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ {0}.

DOI : 10.1214/10-AIHP406
Classification : Primary 60J10, secondary, 60B15, 60G50
Mots-clés : random walk, random coefficients autoregressive model, affine group, random equations, contractive system, regular variation
@article{AIHPB_2012__48_2_377_0,
     author = {Brofferio, Sara and Buraczewski, Dariusz and Damek, Ewa},
     title = {On the invariant measure of the random difference equation $X_n=A_nX_{n-1}+B_n$ in the critical case},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {377--395},
     publisher = {Gauthier-Villars},
     volume = {48},
     number = {2},
     year = {2012},
     doi = {10.1214/10-AIHP406},
     zbl = {1259.60077},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/10-AIHP406/}
}
TY  - JOUR
AU  - Brofferio, Sara
AU  - Buraczewski, Dariusz
AU  - Damek, Ewa
TI  - On the invariant measure of the random difference equation $X_n=A_nX_{n-1}+B_n$ in the critical case
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2012
SP  - 377
EP  - 395
VL  - 48
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/10-AIHP406/
DO  - 10.1214/10-AIHP406
LA  - en
ID  - AIHPB_2012__48_2_377_0
ER  - 
%0 Journal Article
%A Brofferio, Sara
%A Buraczewski, Dariusz
%A Damek, Ewa
%T On the invariant measure of the random difference equation $X_n=A_nX_{n-1}+B_n$ in the critical case
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2012
%P 377-395
%V 48
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/10-AIHP406/
%R 10.1214/10-AIHP406
%G en
%F AIHPB_2012__48_2_377_0
Brofferio, Sara; Buraczewski, Dariusz; Damek, Ewa. On the invariant measure of the random difference equation $X_n=A_nX_{n-1}+B_n$ in the critical case. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 2, pp. 377-395. doi : 10.1214/10-AIHP406. http://www.numdam.org/articles/10.1214/10-AIHP406/

[1] M. Babillot, P. Bougerol and L. Élie. The random difference equation Xn = AnXn−1 + Bn in the critical case. Ann. Probab. 25 (1997) 478-493. | Zbl

[2] M. Benda. Contractive stochastic dynamical systems. Unpublished manuscript, Ludwig-Maximilians-Universität München, 1999.

[3] S. Brofferio. How a centred random walk on the affine group goes to infinity. Ann. Inst. Henri Poincaré Probab. Statist. 39 (2003) 371-384. | Numdam | Zbl

[4] D. Buraczewski. On invariant measures of stochastic recursions in a critical case. Ann. Appl. Probab. 17 (2007) 1245-1272. | Zbl

[5] D. Buraczewski. On tails of fixed points of the smoothing transform in the boundary case. Stochastic Process. Appl. 119 (2009) 3955-3961. | Zbl

[6] D. Buraczewski, E. Damek and A. Hulanicki. Asymptotic behavior of Poisson kernels NA group. Comm. Partial Differential Equations 31 (2006) 1547-1589. | Zbl

[7] D. I. Cartwright, V. A. Kaimanovich and W. Woess. Random walks on the affine group of local fields and of homogeneous trees. Ann. Inst. Fourier (Grenoble) 44 (1994) 1243-1288. | Numdam | Zbl

[8] E. Damek and A. Hulanicki. Asymptotic behavior of the invariant measure for a diffusion related to a NA group. Colloq. Math. 104 (2006) 285-309. | Zbl

[9] G. Choquet and J. Deny. Sur l'équation de convolution μ = μ * σ. C. R. Acad. Sci. Paris 250 (1960) 799-801 (in French). | Zbl

[10] L. Élie. Comportement asymptotique du noyau potentiel sur les groupes de Lie. Ann. Sci. École Norm. Sup. (4) 15 (1982) 257-364. | Numdam | Zbl

[11] W. Feller. An Introduction to Probability Theory and Its Application, Vol. II. Wiley, New York, 1966. | MR | Zbl

[12] G. B. Folland and E. Stein. Hardy Spaces on Homogeneous Groups. Princeton Univ. Press, Princeton, NJ, 1982. | MR | Zbl

[13] C. M. Goldie. Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 (1991) 126-166. | MR | Zbl

[14] A. K. Grincevičjus. Limit theorem for products of random linear transformations of the line. Litovsk. Mat. Sb. 15 (1975) 61-77, 241 (in Russian). | Zbl

[15] A. K. Grincevičjus. On a limit distribution for a random walk on lines. Litovsk. Mat. Sb. 15 (1975) 79-91, 243 (in Russian). | MR | Zbl

[16] H. Kesten. Random difference equations and renewal theory for products of random matrices. Acta Math. 131 (1973) 207-248. | MR | Zbl

[17] É. Le Page and M. Peigné. A local limit theorem on the semi-direct product of R∗+ and Rd. Ann. Inst. Henri Poincaré Probab. Statist. 33 (1997) 223-252. | Numdam | MR | Zbl

[18] S. C. Port and C. J. Stone. Hitting time and hitting places for non-lattice recurrent random walks. J. Math. Mech. 17 (1967) 35-57. | MR | Zbl

[19] S. C. Port and C. J. Stone. Potential theory of random walks on Abelian groups. Acta Math. 122 (1969) 19-114. | MR | Zbl

Cité par Sources :