@article{AIHPB_2006__42_5_579_0, author = {Inglot, Tadeusz and Ledwina, Teresa}, title = {Asymptotic optimality of new adaptive test in regression model}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {579--590}, publisher = {Elsevier}, volume = {42}, number = {5}, year = {2006}, doi = {10.1016/j.anihpb.2005.05.002}, mrnumber = {2259976}, zbl = {1098.62053}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.05.002/} }
TY - JOUR AU - Inglot, Tadeusz AU - Ledwina, Teresa TI - Asymptotic optimality of new adaptive test in regression model JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 579 EP - 590 VL - 42 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2005.05.002/ DO - 10.1016/j.anihpb.2005.05.002 LA - en ID - AIHPB_2006__42_5_579_0 ER -
%0 Journal Article %A Inglot, Tadeusz %A Ledwina, Teresa %T Asymptotic optimality of new adaptive test in regression model %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 579-590 %V 42 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2005.05.002/ %R 10.1016/j.anihpb.2005.05.002 %G en %F AIHPB_2006__42_5_579_0
Inglot, Tadeusz; Ledwina, Teresa. Asymptotic optimality of new adaptive test in regression model. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 5, pp. 579-590. doi : 10.1016/j.anihpb.2005.05.002. http://www.numdam.org/articles/10.1016/j.anihpb.2005.05.002/
[1] Adaptive tests of linear hypotheses by model selection, Ann. Statist. 31 (2003) 225-251. | MR | Zbl
, , ,[2] An alternative point of view on Lepski's method, in: State of the Art in Probability and Statistics, Leiden 1999, IMS, Beachwood, OH, 2001, pp. 113-133. | MR
,[3] Efficient and adaptive nonparametric test for the two-sample problem, Ann. Statist. 31 (2003) 2036-2058. | MR | Zbl
, ,[4] Testing for no effect by cosine series methods, Scand. J. Statist. 27 (2000) 747-763. | MR | Zbl
,[5] Testing goodness of fit in regression via order selection criteria, Ann. Statist. 20 (1992) 1412-1425. | MR | Zbl
, ,[6] Goodness-of-fit tests for parametric regression models, J. Amer. Statist. Assoc. 96 (2001) 640-652. | MR | Zbl
, ,[7] On large deviation theorem for data driven Neyman's statistic, Statist. Probab. Lett. 47 (2000) 487-509. | MR | Zbl
,[8] Vanishing shortcoming of data driven Neyman's tests, in: Asymptotic Methods in Probability and Statistics, A Volume to Honour Miklós Csörgő, Elsevier, Amsterdam, 1998, pp. 811-829. | MR | Zbl
, , ,[9] Asymptotic optimality of data driven smooth tests for location-scale family, Sankhyā Ser. A 63 (2001) 41-71. | MR | Zbl
, ,[10] Intermediate approach to comparison of some goodness-of-fit tests, Ann. Inst. Statist. Math. 53 (2001) 810-834. | MR | Zbl
, ,[11] On consistent minimax distinguishability and intermediate efficiency of Cramér-von Mises test, J. Statist. Plann. Inference 124 (2004) 453-474. | MR | Zbl
, ,[12] T. Inglot, T. Ledwina, Intermediate efficiency of some max-type statistics, J. Statist. Plann. Inference (2006), in press. | MR | Zbl
[13] T. Inglot, T. Ledwina, Towards data driven selection of penalty function for data driven Neyman tests, Linear Algebra Appl. (2005), in press. | Zbl
[14] Continuous Univariate Distributions, vol. 1, Wiley Interscience, New York, 1994. | MR | Zbl
, , ,[15] Asymptotic Optimality of Likelihood Ratio Tests in Exponential Families, Math. Centre Tracts, vol. 77, CWI, Amsterdam, 1978. | MR | Zbl
,[16] The penalty in data driven Neyman's tests, Math. Methods Statist. 11 (2002) 323-340. | MR
,[17] On the Hodges-Lehmann asymptotic efficiency of nonparametric tests of goodness-of-fit and homogeneity, Theory Probab. Appl. 32 (1987) 77-88. | MR | Zbl
,[18] Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, New York, 1995. | MR | Zbl
,[19] Combination of One-Sided Statistical Tests, Mathematical Centre, Amsterdam, 1969. | MR | Zbl
,[20] The likelihood ratio test for the multinomial distribution, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. I, 1972, pp. 31-50. | MR | Zbl
, ,Cité par Sources :