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Abstract

This paper presents some results on asymptotic optimality of the test procedure introduced recently by Baraud et al. [Y. Baraud,
S. Huet, B. Laurent, Adaptive tests of linear hypotheses by model selection, Ann. Statist. 31 (2003) 225–251]. The optimality
relies on some comparison of ability of the new statistic to discriminate between null hypothesis and convergent alternatives with
capability of respective Neyman–Pearson test.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Cet article présente des résultats d’optimalité asymptotique pour la procédure de test introduite récemment par Baraud et al.
[Y. Baraud, S. Huet, B. Laurent, Adaptive tests of linear hypotheses by model selection, Ann. Statist. 31 (2003) 225–251]. L’op-
timalité repose sur la comparaison entre la capacité à distinguer l’hypothèse nulle d’alternatives convergentes de cette nouvelle
procédure et celle du test de Neyman–Pearson correspondant.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

For testing an adequacy of some regression models, various tests, based on empirical Fourier coefficients, were
proposed. Several examples can be found in Eubank [4], Fan and Huang [6] and Baraud et al. [1], e.g.

The paper of Baraud et al. [1] (BHL in what follows) provided a new solution in the area. The new test is a
combination of tests for some selected subproblems. The purpose of the present contribution is to study some optimal
asymptotic property of this new procedure.

There are many ways to define asymptotic optimality of tests. Two main streams are: asymptotic efficiency and
minimaxity.
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By asymptotic efficiency we mean that the optimal is the most efficient with respect to some asymptotic relative
efficiency measure. We shall discuss briefly some aspects of the use of four known efficiency measures. Our notations
and formulations shall be strictly related to those used in Section 1 of Nikitin [18]. We refer there for more detailed
definitions and great amount of related information.

Consider some abstract testing problem

H : θ ∈ Θ0 ⊂ Θ

against

A : θ ∈ Θ1 = Θ \ Θ0.

Let n be a sample size and suppose we have two sequences of statistics {Tn} and {Vn}, large values of them to be
significant. Let α be given level of significance and let β be a given power. Assume 0 < α < β < 1 and denote by
NT (α,β, θ) the minimal sample size necessary for the test, based on {Tn}, being on the level α to have power not less
than β at the point θ ∈ Θ1. NV (α,β, θ) is defined in the same way. The relative efficiency of {Vn} with respect to
{Tn} is given by

eV,T (α,β, θ) = NT (α,β, θ)/NV (α,β, θ).

Three classic notions of the asymptotic relative efficiency (ARE) of the sequence {Vn} with respect to {Tn} are as
follows.

If for 0 < α < β < 1 and θ → θ0 ∈ ∂Θ0 (in a certain topology on Θ) there exists the limit

eP
V,T (α,β, θ0) = lim

θ→θ0
eV,T (α,β, θ), (1.1)

it is called the Pitman ARE.
If for β ∈ (0,1) and θ ∈ Θ1 there exists the limit

eB
V,T (β, θ) = lim

α↓0
eV,T (α,β, θ), (1.2)

it is called the Bahadur ARE.
If for α ∈ (0,1) and θ ∈ Θ1 there exists the limit

eHL
V,T (α, θ) = lim

β↑1
eV,T (α,β, θ), (1.3)

it is called the Hodges–Lehmann ARE.
Though these measures are very useful for comparisons of various classic statistics, there are many situations when

they fail to work.
In particular, the Pitman ARE is applicable in practice to asymptotically normal statistics Tn and Vn and for

sequences of alternatives {θn} approaching θ0 ∈ ∂Θ0 at the rate 1/
√

n. However, many statistics considered in con-
temporary literature have asymptotic power α for alternatives converging at the rate 1/

√
n. Therefore, slower rates

are required to get nontrivial and meaningful results. Needless to say that nonnormal asymptotic distributions are
common, as well. Therefore, the use of Pitman efficiency is excluded in considerable number of important cases.
On the other hand, the standard way of calculating the Bahadur ARE goes through a derivation of exact slopes. For
this purpose large deviation asymptotics, under H0, of {Tn} and {Vn} has to be established. Obviously, the asymp-
totics should be nontrivial. Again, it turns out that for some complicated statistics this requirement is not fulfilled.
An important example is provided in Inglot [7]. Finally, note that an application of Hodges–Lehmann efficiency to
several goodness-of-fit statistics leads to completely useless, from statistical point of view, conclusions (cf. Nikitin
[17,18]). Briefly speaking, this efficiency is not able to discriminate statistics based on L2-, sup- and other seminorms
of the empirical process and the Neyman–Pearson statistic under known alternative. This is in obvious conflict with
outcomes of many other efficiency measures as well as existing evidence on power behavior of such tests. For com-
pleteness note that similar effect is observed when one considers fixed α, large class of alternatives convergent to the
null set and looks at the rate of convergence of the power β to 1. For some illustration see Inglot and Ledwina [11].

There is a growing evidence that the fourth ARE, which we shall discuss now, is much widely applicable and gives
results which are consistent, to a reasonable extent, with finite sample power behavior of various, both classic and
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modern, solutions. This efficiency was introduced by Kallenberg in 1983 as an intermediate approach between (1.1)
and (1.2). Following the above scheme we can describe roughly this ARE as follows.

If for β ∈ (0,1), θ → θ0 ∈ ∂Θ0 (in a certain topology on Θ) and α → 0 at the controlled rate there exists the limit

eK
V,T (β, θ0) = lim

α↓0, θ→θ0
eV,T (α,β, θ). (1.4)

it is called the Kallenberg ARE.
Formally, the definition requires slightly modified quantities NT (α,β, θ) and NV (α,β, θ), but we shall not go here

into such details. Note that the characteristic feature of this approach is that θ → θ0 slower than in (1.1) and α → 0
slower than in (1.2). It makes possible to apply this efficiency in problems when 1/

√
n rates are too restrictive. More-

over, slower rate of convergence of α → 0 allows one to replace the requirement on nondegenerate large deviations
by less restrictive postulate on existence of nondegenerate moderate deviations. This further extends applicability
of (1.4). Another appealing feature of the Kallenberg ARE is that simultaneously it allows to compare also procedures
for which (1.1) and (1.2) work. Typically, the three ARE results then coincide. So, the range of statistics which can be
compared by (1.4) is considerably large. Closing, note that (1.4) was named by the author as intermediate efficiency.
For short, we shall call alternatives converging to some null parameter slower than 1/

√
n as intermediate ones.

In view of the discussed above increasing complexity of tests proposed recent years, sequences of intermediate
alternatives were naturally incorporated to the minimax approach, as well. Last years, main stream of investigation in
this area focused on the derivation of rates of consistent minimax distinguishability in relation to degree of smoothness
of alternative sequences. Great interest in this area was stimulated by long series of Ingster’s papers. However, recent
results of Inglot and Ledwina [11] indicate that it is hard to find a reliable interpretation of this approach.

In view of the above, we have decided to show optimality of the BHL procedure in the spirit of the Kallenberg ap-
proach. Before presenting our solution, let us mention that BHL procedure is nonstandard in many aspects. First point
is that the basic variant of this solution which we shall investigate, gives the test only approximately on the level α.
Next point is, that the test statistic strongly depends on the given significance level. According to our knowledge, such
case was not a subject of existing results on efficiency calculations. In particular, it is not clear how to calculate the
Kallenberg efficiency in such case. Being faced with this situation, we have decided to elaborate at once more fine
approach, which is closely related to Kallenberg’s setting but concerns intermediate comparison of asymptotic power
of the given procedure and the best one, in case the alternative would be known. More precisely, we shall show that
for suitable sequences of levels {αn} tending to 0 and related sequences of alternatives {θn} tending to the null one,
both procedures can simultaneously be on the same level αn and achieve the same nondegenerate asymptotic power
under θn, as n → ∞. We supplemented the above by including also the case of fixed alternatives. In this way we have
proved that, under large class of convergent alternatives and some fixed ones, the BHL construction is asymptotically
as informative as the Neyman–Pearson statistic, in case the alternative was known. In other words, the BHL solution
efficiently adapts to the data at hand.

Our approach is discussed in more details in Subsection 2.2. The discussion is preceded by brief presentation of the
variant of BHL solution which we consider. Technical tools that are needed to prove the optimality results are collected
in Subsection 2.3. Subsection 2.4 contains formal statement of the optimality results and some related discussion.
Section 3 contains some new auxiliary results on tails and quantiles of chi-square distribution. Also derivations of
some technical tools needed to get the optimality are presented there. Appendix collects proofs of auxiliary results.

2. Optimality of BHL construction

2.1. The BHL construction

We consider a simplest set-up which is consistent with the framework of BHL. Namely, we assume that the obser-
vations have the structure

yi = c + r(ti) + εi, i = 1, . . . , n, (2.1)

where c is unknown constant, r(t) is unknown function, ti = (2i − 1)/2n, i = 1, . . . , n, while ε1, . . . , εn are i.i.d.
N(0,1). Throughout we assume r(t) ∈ L2[0,1] and

∫ 1
0 r(t)dt = 0. The null hypothesis asserts

H0: r ≡ 0.



582 T. Inglot, T. Ledwina / Ann. I. H. Poincaré – PR 42 (2006) 579–590
To present BHL test of H0 we need several auxiliary notations.
Introduce the cosine system

bk(t) = √
2 cos(πkt), k � 1, t ∈ [0,1],

and the empirical Fourier coefficients

φ̂k = 1

n

n∑
i=1

yibk(ti), k � 1. (2.2)

Note that
∑n

i=1 bk(ti) = 0 for k = 1, . . . , n− 1 and therefore, for such k’s, the distribution of φ̂k does not depend on c.
Hence, in what follows we set c = 0.

Let χ2
k denotes a central chi-square distributed random variable with k degrees of freedom. Let qk(w) be (1 − w)-

quantile of χ2
k , i.e.

P
(
χ2

k � qk(w)
) = w. (2.3)

Throughout α is the prescribed significance level. We consider the test statistic (6) in BHL in case the procedure
P2 on p. 228, ibidem, is used. In our application M = {1, . . . , l(n)}, for some l(n), l(n) < n, ‖Πmy‖2

m = ∑m
k=1(φ̂k)

2

and αm = α/|M| = α/l(n). Therefore, rescaled by n, the formula (6) reads as follows

T̂α = max
1�j�l(n)

{
j∑

k=1

(√
nφ̂k

)2 − qj (wn)

}
, wn = α

l(n)
. (2.4)

H0 is rejected if T̂α > 0. With this choice of wn, T̂α is approximately on the level α. The null hypothesis is rejected if
at least one of smooth tests, forming T̂α , rejects respective submodel.

BHL described the set of alternatives for which T̂α has finite sample power at least β, β ∈ (α,1). Their result can
be interpreted as follows: under fixed alternative and fixed n, the power of T̂α is comparable to the power of the best
of smooth tests forming T̂α (cf. BHL, p. 231). As mentioned in Section 1, our approach is asymptotic and allows some
comparison of T̂α with the best existing solution, in case the alternative was known. Moreover, since the optimality
notion which we use was applied earlier to some other tests, one can do some further comparisons. Cf. Remark 2 of
Section 2.4 for related discussion. Another advantage of our approach is that it can be applied to non-Gaussian models
as well. For some evidence see Kallenberg [16] and Inglot and Ledwina [9], e.g.

2.2. Further discussion of the optimality notion

Our approach has roots in the notion of vanishing shortcoming which was initiated by Oosterhoff [19]. This notion
and some simplified variants of it were further elaborated in Oosterhoff and van Zwet [20], Kallenberg [15], Inglot
et al. [8], Inglot and Ledwina [9,10], Kallenberg [16], Ducharme and Ledwina [3], among others. Here we shall restrict
mainly our attention to the core part of the notion of vanishing shortcoming, similarly as treated recently in Ducharme
and Ledwina [3], e.g. Since the terminology is rich, to avoid misunderstanding, we shall tell here simply on optimality.

We consider independent random variables (yi, εi), i = 1, . . . , n, yi = r(ti) + εi , εi ∼ N(0,1), the hypothesis
H0: r ≡ 0 and auxiliary alternative

A0: r(t) = rn(t) = ϑng(t),

where

g ∈F =
{

f : sup
t∈[0,1]

∣∣f (t)
∣∣ < ∞,

1∫
0

f (t)dt = 0,

1∫
0

f 2(t)dt = 1

}
,

while ϑn ∈ R is a constant or ϑn → 0 as n → ∞.
It is known that vanishing shortcoming can be expected only under fixed or intermediate alternatives (cf. Kallen-

berg [15]). Therefore, we shall restrict attention to the case nϑ2
n → ∞, only. Similarly as in Ducharme and Led-
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wina [3], we shall state our results only for some simple subclass of the above described alternatives. Namely, we
shall consider alternatives of the form

A∗
0: rn(t) = ρ

nξ
f (t), f (t) =

d∑
k=1

φkbk(t), ρ > 0,

d∑
k=1

φ2
k = 1, (2.5)

where d = d(f ) is fixed but otherwise arbitrary, φd 
= 0 and φ1, . . . , φd are Fourier coefficients of f .
This simple case has the advantage that many technicalities can be skipped. Obviously, the simplification causes

that some aspects are less seen or not seen at all. However, our main purpose is to discuss the core of the approach, its
interpretation and possible further developments. Therefore, it seems it is sufficient to elaborate this basic case, only.

On the other hand, since the Gaussian case, we consider here, is relatively simple, some bigger flexibility in rates
of convergence in (2.5), than those allowed in Ducharme and Ledwina [3] and some earlier developments, can be
achieved. It turns out that, in the present case, the whole range [0,1/2) for ξ can be covered (cf. Remark 1 of Sec-
tion 2.4). Therefore we shall consider

ρn = √
n
(
ρn−ξ

)
and ξ ∈ [0,1/2). (2.6)

Denote for a moment by NP the Neyman–Pearson statistic for testing H0 against A∗
0. In view of the peculiarities of

the BHL construction, which we discussed in the final part of Section 1, in contrast to some previous developments,
we shall phrase here the optimality criterion as a property of the test statistics rather than tests, it-selves. It seems that
this new formulation allows also for more handy interpretation of previous developments.

Roughly speaking, the optimality of T̂α means that, for large class of levels αn, αn → 0 as n → ∞, one can
construct right-handed critical regions based on NP and T̂α such that both regions have the same exact size αn for n

sufficiently large, and the same asymptotic power β ∈ (0,1). This means that, for large n, the statistic T̂α recovers the
unknown alternative A∗

0 as precisely as the best statistic in case A∗
0 was known. Another words, from the point of view

of controlling the precision of inference in terms of exact error of the first kind and asymptotic, under intermediate
alternatives, error 1 − β ∈ (0,1) of the second kind, T̂α is as informative as NP.

To control the asymptotic power and exact size of tests based on T̂α and NP we shall use the results collected below.

2.3. Technical tools needed to derive the optimality

Denote by Pn the distribution of the sample induced by (2.5) and (2.6) and set P0 for the distribution of the sample
under H0.

Theorem 1. Assume that l(n) → ∞ and l(n) = o(ρn) as n → ∞. Then under (2.5) and (2.6)

lim
n→∞Pn

(
T̂α − ρ2

n

2ρn

� x

)
= Φ(x), x ∈ R,

where Φ is cdf of N(0,1) random variable.

Theorem 2. Let {xn} be a real sequence such that nx2
n → ∞. Assume that nx2

n � l(n) for sufficiently large n. Then

P0
(
T̂α � nx2

n

)
� exp

{
−1

2
nx2

n + 1

2
l(n) lognx2

n + O(1)

}
.

Assume now that we know the alternative Pn (cf. (2.5) and (2.6)). The logarithm of the Neyman–Pearson statistic
for H0 against Pn has the form

Ln = ρnVn − 1

2
ρ2

ncn(f ),

where

Vn = 1√
n

n∑
yif (ti) and cn(f ) = 1

n

n∑
f 2(ti). (2.7)
i=1 i=1
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We have EPnLn = 1
2ρ2

ncn(f ) and VarPnLn = ρ2
ncn(f ). Hence

Pn

(Ln − EPnLn√
VarPnLn

� x

)
= Pn

(
Vn − ρncn(f )

[cn(f )]1/2
� x

)
= Φ(x), x ∈ R.

Therefore, in what follows, Vn will be our benchmark. Recall that
∫ 1

0 f (t)dt = 0 and
∫ 1

0 f 2(t)dt = 1. The form of f

implies also that f is bounded and satisfies Lipschitz condition. This implies |cn(f ) − 1| � c/n for some constant c

depending only on f . So, by (2.6) we have

lim
n→∞Pn(Vn − ρn � x) = Φ(x).

Since EP0Vn = 0 and VarP0Vn = cn(f ) then the standard bounds for tails of Φ and the above imply

Theorem 3. Let {xn} be a sequence of positive numbers such that nx2
n → ∞. Then

P0(Vn �
√

nxn) = 1 − Φ
(√

nxn/
{
cn(f )

}1/2) = exp

{
−1

2
nx2

n − 1

2
lognx2

n + O(1)

}
. (2.8)

Theorems 1 and 2 will be proved in Section 3. Now, we shall present our basic result.

2.4. Optimality result, some conclusions and remarks

For k ∈ R set

C(1)
n,k = {

Vn − ρn1/2−ξ � k
}
, C(2)

n,k =
{

T̂α − ρ2n1−2ξ

2ρn1/2−ξ
� k

}
and

αn = P0
(
C(2)

n,k

)
.

Theorem 4. Assume Pn obeys (2.5) for some ρ > 0, ξ ∈ [0,1/2) and arbitrary f having finite expansion in the system
b1, b2, . . . . Suppose l(n) → ∞ and l(n) = o(n1/2−ξ / logn). Then, for any k ∈ R, there exists a real sequence {on},
on → 0 as n → ∞, such that for critical regions C(2)

n,k and C(1)
n,k+on

and all n sufficiently large it holds that

αn = P0
(
C(2)

n,k

) = P0
(
C(1)

n,k+on

) = exp

{
−1

2
ρ2n1−2ξ − kρn1/2−ξ + o

(
n1/2−ξ

)}
and simultaneously

lim
n→∞Pn

(
C(2)

n,k

) = lim
n→∞Pn

(
C(1)

n,k+on

) = 1 − Φ(k).

Theorem 4 can be proved in the same way as Theorem 4.1 in Ducharme and Ledwina [3], e.g. Therefore we omit
a proof.

Remark 1. Due to the Gaussian model, we consider, no asymptotics is needed to expand P0(Vn � √
nxn) and only

pure Gaussian tails are involved. This is a reason that in this case we have got the result for any ξ ∈ [0,1/2), in contrast
to some previous results holding for ξ ∈ (1/4,1/2), only (cf. Theorem 3.3(3) in Inglot and Ledwina [10] and Theorem
4.1 in Ducharme and Ledwina [3], e.g.).

There are possible some reformulations and extensions of Theorem 4 in the spirit of Theorems 5.1 and 5.2 of Inglot
et al. [8] (cf. also Theorem 4.6 and 4.7 in Kallenberg [16]). To state them let us denote by β+

n (γ,P ) the power under
P of the level γ test with critical region {Vn − ρn1/2−ξ � k1,γ }. Similarly set βn(γ,P ) to be the power under P of
the level γ test with critical region{

T̂α − ρ2n1−2ξ

1/2−ξ
� k2,γ

}
.

2ρn
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Put

Rn(γ,P ) = β+
n (γ,P ) − βn(γ,P ). (2.9)

The quantity (2.9) is called shortcoming.

Theorem 5. Let {tn} be a sequence of real numbers and set

αn = P0

(
T̂α − ρ2n1−2ξ

2ρn1/2−ξ
� tn

)
. (2.10)

Suppose

−∞ < lim inf
n→∞ tn � lim sup

n→∞
tn < ∞.

Then, under the assumptions of Theorem 4, we have

lim
n→∞Rn(αn,Pn) = 0.

Theorem 5 shows that the shortcoming vanishes in the case of arbitrary αn, αn → 0, such that the asymptotic power
of the tests under consideration stays away 0 and 1.

The next modification covers the case of arbitrary asymptotic power.

Theorem 6. Under the assumptions of Theorem 4 and arbitrary αn → 0, given by (2.10), it holds

lim
n→∞Rn(αn,Pn) = 0. (2.11)

It is intuitive that almost the same argument proves Theorems 4 and 5. For some evidence see proof of Theorem 4.6
in Kallenberg [16]. Theorem 6 can be proved exactly as Theorem 5.2 in Inglot et al. [8].

The property (2.11) is called vanishing shortcoming.

Remark 2. Theorem 4 and its derivatives show that the optimality of T̂α provides an evidence that the construction,
evaluated from the point of view of the theory of testing, well exploits the information contained in the sample.

Classic goodness of fit statistics are, as a rule, not optimal in the sense we consider. Illustrative considerations
contained in Inglot and Ledwina [10] nicely show that the approach clearly exhibits well known weaknesses of such
constructions. Moreover, the approach makes it possible to express in quantitative and nicely interpretable way the
degree to which the optimality is violated (cf. Theorem 3.3(2) in Inglot and Ledwina [10]). Also in the present problem
one could indicate some tests which are not optimal. Natural candidates are counterparts of classic solutions. For some
evidence see Eubank [4]. Recent results of Inglot and Ledwina [12] are the premise for such a claim in the case of
Eubank and Hart [5] and Fan and Huang [6] solutions, as well.

It is also worth noticing that it is not excluded that there are many optimal solutions in a given problem. An example
of such situation is uniformity testing and the class of data driven statistics (cf. Kallenberg [16]). It is expected that
similar conclusion shall take place for counterparts of these constructions in the problem considered in the present
paper. For example, the statistic Iλ considered in Eubank [4] is an example of such counterpart, which can be proved
to be optimal for testing H0 against A∗

0.
It is also clear that under fixed alternative and fixed α finite sample power behavior of optimal constructions are

not necessarily the same. Therefore some further analysis and discussion, taking into account some desirable features
in a possible application, is welcome to choose the best solution. For some comments on such aspects of optimal data
driven statistics see Inglot and Ledwina [13].

On the other hand, the exhibited existence of a whole class of optimal statistics is a good motivation for elaborating
more subtle variant of the notion of optimality which would allow for ordering them.
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3. Proofs of results of Section 2.3

3.1. Some auxiliary results

We start with some bounds for tails and quantiles of χ2
k – a random variable with central chi-square distribution

with k degrees of freedom.
Set

c(k) = 2√
k�(k/2)

(
k

2e

)k/2

, Ek(x) = exp

{
−x

2
+ k

2
+ k − 2

2
log

x

k
− 1

2
log k

}
,

Gk(x) = x√
k
Ek(x) = exp

{
−x

2
+ k

2
log

ex

k

}
.

(3.1)

Lemma 1. For k � 2 and x > 0 it holds

P
(
χ2

k � x
)
� c(k)Ek(x) � 1

2
Ek(x) (3.2)

while for k � 2 and x > k − 2 we have

P
(
χ2

k � x
)
� c(k)

[
x

x − k + 2

]
Ek(x) � 1√

2π

[
x

x − k + 2

]
Ek(x). (3.3)

Hence, for k � 2 and x > k − 2 it follows

1

2

[√
k

x

]
Gk(x) � P

(
χ2

k � x
)
� 1√

2π

[ √
k

x − k + 2

]
Gk(x). (3.4)

Next lemma presents a bound which, for large x’s, is less sharp than (3.4) but sometimes is more convenient in
applications.

Lemma 2. For any k � 1 and x � k we have

P
(
χ2

k � x
)
� Gk(x). (3.5)

The form of T̂α (cf. (2.4)) causes also a need to deal with the quantiles qk(·). Our collection of results on this
quantity starts with an upper bound derived by Birgé [2] (cf. his (8.34) or (15) in BHL).

For all k � 1 and all w ∈ (0,1), qk(w) � k + 2
√

k log(1/w) + 2 log(1/w). (3.6)

Moreover, we have

Lemma 3.

(1) For any w ∈ (0,1) q1(w) � 1 + 2 log(1/w) − log(1 + 2 log(1/w)). (3.7)
(2) For any w ∈ (0,1/2) q1(w) � log(1/2w). (3.8)
(3) For any w ∈ (0,1) q2(w) = 2 log(1/w). (3.9)
(4) For any k � 3 and all w � 1/k qk(w) � k + 2 log(1/w) − 3. (3.10)

A refined variant of (4) is as follows.
(5) For any k � 3 and all w � e−k/3

qk(w) � k + 2 log(1/w) + 1

3

√
k log log(1/w) − Q, Q = 3.1. (3.11)

(6) For any k � 32 and all w ∈ (e−k/3,1/k) qk(w) � k + 2 log(1/w) + 1
4

√
k log(1/w). (3.12)



T. Inglot, T. Ledwina / Ann. I. H. Poincaré – PR 42 (2006) 579–590 587
Proofs of Lemmas 1 and 3 are given in Appendix A. An easy proof of Lemma 2 can be found in Inglot and
Ledwina [12].

Now we shall present some simple useful facts on exact, approximate and empirical Fourier coefficients. Recall
that the distribution of yi ’s under null model was denoted by P0. Consider now the alternatives defined by

r(t) = rn(t) = ρ

nξ
f (t), ρ > 0, ξ ∈ [0,1/2),

1∫
0

f (t)dt = 0,

1∫
0

f 2(t)dt = 1. (3.13)

Introduce

φk =
1∫

0

f (t)bk(t)dt, φkn = 1

n

n∑
i=1

f (ti)bk(ti), φ̂k = 1

n

n∑
i=1

yibk(ti) (3.14)

and set

φ̃ = (φ1n, . . . , φn−1n), φ̂ = (φ̂1, . . . , φ̂n−1).

Lemma 4 ((Eubank [4])). Assume that f ′ ∈ L2[0,1] and
∫ 1

0 f (t)dt = 0. Then there is a constant A independent of k

and n such that

|φkn − φk| � A/n, 1 � k � n − 1. (3.15)

Consequently, for any integer 1 � j � n − 1∣∣∣∣∣
j∑

k=1

φ2
kn −

j∑
k=1

φ2
k

∣∣∣∣∣ = O

(√
j

n

)
. (3.16)

Another helpful observation is that for some i.i.d. Z1, . . . ,Zn−1, Zi ∼ N(0,1) and Z = (Z1, . . . ,Zn−1), it holds

√
nφ̂

D= Z under H0,√
nφ̂

D= Z + ρnφ̃, ρn = ρn1/2−ξ under (3.13). (3.17)

Finally for v = (v1, v2, . . .) ∈ R
∞ we set

|v|j =
(

j∑
k=1

v2
k

)1/2

for j � 1 and |v|2jk = |v|2k − |v|2j for 1 � j < k. (3.18)

The same convention shall be applied to the components of Z = (Z1, . . . ,Zn−1) and
√

nφ̂ = √
n(φ̂1, . . . , φ̂n−1).

Now we shall rewrite the test statistic T̂α in an equivalent form. For this purpose set

m̃ = min
{
m: 1 � m � l(n),

∣∣√nφ̂
∣∣2
m

− qm(wn) �
∣∣√nφ̂

∣∣2
j
− qj (wn), j = 1, . . . , l(n)

}
. (3.19)

With this notation

T̂α = ∣∣√nφ̂
∣∣2
m̃

− qm̃(wn). (3.20)

3.2. Proof of Theorem 1

Since l(n) → ∞, by (2.4) and (3.17), we infer that

Pn

(
T̂α − ρ2

n

2ρn

� x

)
� P0

( |Z + ρnφ̃|2d − qd(wn) − ρ2
n

2ρn

� x

)
= P0

(
1

2ρn

|Z|2d +
d∑

φknZk + ρn

2

(
d∑

φ2
kn − 1

)
� x + 1

2ρn

qd(wn)

)
.

k=1 k=1
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By (3.16) and properties of f in (2.5), we have |φ̃|2d − 1 = O(1/n). The upper bound (3.6) and the assumption

l(n) = o(ρn) imply that qd(wn)/ρn → 0. Since (
∑d

k=1 φknZk)/|φ̃|d ∼ N(0,1), the above implies

lim sup
n→∞

Pn

(
T̂α − ρ2

n

2ρn

� x

)
� Φ(x), x ∈ R.

On the other hand, since qm̃(wn) � 0 and m̃ � l(n) we get

Pn

(
T̂α − ρ2

n

2ρn

� x

)
� P0

( |Z + ρnφ̃|2l(n) − ρ2
n

2ρn

� x

)
.

By (3.5) and similar argument as above, the proof is concluded. �
3.3. Proof of Theorem 2

Exploiting (3.20), (3.17), (3.8), (3.9) and (3.10) we obtain for n sufficiently large

P0
(
T̂α � nx2

n

) =
l(n)∑
k=1

P0
(
T̂α � nx2

n, m̃ = k
)

�
l(n)∑
k=1

P0
(∣∣√nφ̂

∣∣2
k
− qk(wn) � nx2

n

)
� P0

(
χ2

1 � nx2
n + log(1/2wn)

)
+ P0

(
χ2

2 � nx2
n + log(1/wn)

) +
l(n)∑
k=3

P0
(
χ2

k � nx2
n + log(1/wn) + k − 3

)
. (3.21)

The first term of (3.21) can be majorized using standard bounds for normal tails. The second term can be calculated
explicitly. Omitting k − 3 in the third term and exploiting the assumption nx2

n � l(n) an application of (3.5) concludes
the proof. �
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Appendix A. Proofs of auxiliary lemmas

Proof of Lemma 1. Set

Ik(x) =
∞∫

x

u(k/2)−1 e−u/2 du.

Then Ik(x) = [2k/2�(k/2)]P(χ2
k � x). Integration by parts yields for any k � 1 and any x > 0

Ik(x) = 2xk/2−1 e−x/2 + (k − 2)

∞∫
x

1

u
uk/2−1 e−u/2 du.

Hence, for k � 2 and x > 0 we get

P
(
χ2

k � x
)
� 2

2k/2�(k/2)
xk/2−1 e−x/2. (A.1)

Now, observe that for k � 2 we have Ik(x) � 2xk/2−1 e−x/2 + [(k − 2)/x]Ik(x). Hence, for x > k − 2, we obtain

P
(
χ2

k � x
)
� 2

k/2

[
x

]
xk/2−1 e−x/2. (A.2)
2 �(k/2) x − k + 2
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Using the notations (3.1), (A.1) and (A.2) can be equivalently stated as

P
(
χ2

k � x
)
� c(k)Ek(x) and P

(
χ2

k � x
)
� c(k)

[
x

x − k + 2

]
Ek(x). (A.3)

In view of (A.3), the proof of (3.2)–(3.4) shall be concluded, provided that we shall show that for each k � 2 it holds
c(k) ∈ (1/2,1/

√
2π]. For this purpose observe that for any natural k we have

c(k + 2)

c(k)
= e−1

(
k + 2

k

)(k+1)/2

while for k � 2 it holds 2[(k + 2)/k](k+1)/2 � e. The last statement is an easy consequence of series expansion of
log(1 + x) for x = 2/k. Observing that c(3) > c(2) > 1/2 we infer that c(k) > 1/2. On the other hand, by Stirling’s
formula, lims→∞ c(2s) = lims→∞ c(2s − 1) = 1/

√
2π . This and the monotonicity of related subsequences, conclude

the proof. �
Proof of Lemma 3. Set q0

1 (w) = 1 + 2 log(1/w) − log(1 + 2 log(1/w)). To prove (1) it is enough to show that w �
P(χ2

1 � q0
1 (w)). Since P(χ2

1 � q0
1 (w)) = 2(1−Φ(

√
q0

1 (w)), due to 1−Φ(x) � (1/
√

2πx) exp{−x2/2}, the problem

reduces to the question if
√

2/πe
√

u/(u − logu) � 1, where u = 1 + 2 log(1/w). Since the function
√

u/(u − logu)

has the maximal value equal to
√

e/(e − 1), the conclusion follows.
Using the bound Φ(x) � 1

2 (1 + √
1 − exp{−x2}) (cf. (13.48) in Johnson et al. [14]) (2) follows by the similar

argument.
Since χ2

2 has the exponential distribution, (3) is obvious.
To prove (4) set q∗

k (w) = k + 2 log(1/w) − 3. By (3.2) it is enough to show that 1
2Ek(q

∗
k (w)) � w. The last holds

if f1(t) � 0, where f1(t) = (k − 2) log(1 + (2t − 3)/k) + 3 − logk − log 4, t = log(1/w), with t � log k, by the
assumption. Since f1 is increasing, it holds f1(t) � f1(log k). The rest of the proof follows by an elementary checking
that f (log k) � 0 for k � 3.

The proof of (5) is similar to that of (4). We set q∗
k (w) = k + 2 log(1/w)+ 1

3

√
k log log(1/w)−Q and, using (3.2),

we reduce the problem to checking if for t = log(1/w), t � k/3, the function

f2(t) = (k − 2) log

{
1 +

(
2t + 1

3

√
k log t − Q

)/
k

}
− 1

3

√
k log t + Q − log 4k

is nonnegative. Since k � 3, the function f2 is increasing on (1,∞). Therefore it is enough to verify that f2(k/3) � 0.
We have (k − 2)−1f2(k/3) = g1(k) + g2(k) + g3(k), where

g1(k) = log

(
5

3
+

{[√
k

3

]
log

(
k

3

)
− Q

}/
k

)
, g2(k) = −

[√
k log

(
k

3

)]/
3(k − 2), g3(k) = Q − log 4k

k − 2
.

Both functions g2(k) and g3(k) attain minimal value at k = 13. These values equal −0.0771 and −0.1602, re-
spectively (up to four decimal digits). Therefore (k − 2)−1f2(k/3) � log(5/3 − Q/k) − 0.2373, which is positive for
k � 8. For k = 3, . . . ,7 one can verify by straightforward calculation that

∑3
i=1 gi(k) > 0.

To prove (6) set q∗
k (w) = k+2 log(1/w)+ 1

4

√
k log(1/w) and t = log(1/w) again. By (3.2), we reduce the problem

to checking that f3(t) � 0, where f3(t) = (k − 2) log{1 + (2t + 1
4

√
kt)/k} − 1

4

√
kt − log 4k. Since log k � t � k/3

we can apply the inequality log(1 + y) � y − y2/2, y ∈ (0,1). Since 1
2

√
t/k � 1/

√
12 this yields f3(t) � [(k −

2)/k]ϕk(t) − log 4k − 1/
√

12, where ϕk(t) = 63
32 t − 1

2
√

k
t3/2 − 2

k
t2. Since ϕk is increasing on [logk, k/3] we get

f3(t) � [(k − 2)/k]ϕk(log k) − log 4k − 1√
12

. As [logy]/y is decreasing for y > e, the above yields f3(t) � g(k), for
k � 32, with

g(k) =
[
k − 2

k

]
[log k]

(
63

32
− 1

2

√
log 32

32
− 2

log 32

32

)
− log 4k − 1/

√
12.

Since g(k) is increasing we have g(k) � g(32) > 0 for k � 32. This concludes the proof. �
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