@article{AIHPB_2006__42_1_103_0, author = {M\'ela, Xavier}, title = {A class of nonstationary adic transformations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {103--123}, publisher = {Elsevier}, volume = {42}, number = {1}, year = {2006}, doi = {10.1016/j.anihpb.2005.02.002}, mrnumber = {2196974}, zbl = {05021195}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.02.002/} }
TY - JOUR AU - Méla, Xavier TI - A class of nonstationary adic transformations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 103 EP - 123 VL - 42 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2005.02.002/ DO - 10.1016/j.anihpb.2005.02.002 LA - en ID - AIHPB_2006__42_1_103_0 ER -
%0 Journal Article %A Méla, Xavier %T A class of nonstationary adic transformations %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 103-123 %V 42 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2005.02.002/ %R 10.1016/j.anihpb.2005.02.002 %G en %F AIHPB_2006__42_1_103_0
Méla, Xavier. A class of nonstationary adic transformations. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 1, pp. 103-123. doi : 10.1016/j.anihpb.2005.02.002. http://www.numdam.org/articles/10.1016/j.anihpb.2005.02.002/
[1] Lucas's theorem and some related results for extended Pascal triangles, Amer. Math. Monthly 97 (3) (1990) 198-204. | MR | Zbl
, ,[2] Generalized Pascal Triangles and Pyramids, their Fractals, Graphs and Applications, Fan, Tashkent, 1990. | MR | Zbl
,[3] The Pascal adic transformation is loosely Bernoulli, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 133-139. | Numdam | MR | Zbl
, ,[4] New K-automorphisms and a problem of Kakutani, Israel J. Math. 24 (1976) 16-38. | MR | Zbl
,[5] Systèmes localement de rang un, Ann. Inst. H. Poincaré 20 (1984) 35-51. | Numdam | MR | Zbl
,[6] Substitutions in Dynamics, Arithmetics, and Combinatorics, Lecture Notes in Math., vol. 1794, Springer-Verlag, 2002. | MR | Zbl
,[7] Invariant measures and orbits of dissipative transformations, Adv. in Math 9 (1972) 52-65. | MR | Zbl
, , ,[8] Substitution subshifts and Bratteli diagrams, in: , , (Eds.), Topics in Symbolic Dynamics and Applications, London Math. Soc. Lecture Note Ser., Cambridge University Press, 1999. | MR | Zbl
,[9] Time change, monotone equivalence, and standard dynamical systems, Dokl. Akad. Nauk SSSR 223 (4) (1975) 789-792, (in Russian). | MR | Zbl
,[10] Monotone equivalence in ergodic theory, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1) (1977) 104-157, (in Russian). | MR | Zbl
,[11] Standardness of rearrangement automorphisms of segments and flows on surfaces, Mat. Zametki 20 (4) (1976) 479-488, (in Russian). | MR | Zbl
, ,[12] Eigenvalue theorems in topological transformation groups, Trans. Amer. Math. Soc. 139 (1969) 359-369. | MR | Zbl
, ,[13] A sufficient condition for weak mixing of substitutions and stationary adic transformations, Math. Notes 44 (1988) 920-925. | Zbl
,[14] Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878) 184-240. | JFM | MR
,[15] X. Méla, Dynamical properties of the Pascal adic and related systems, Ph.D. thesis, University of North Carolina at Chapel Hill, 2002.
[16] Dynamical properties of the Pascal adic transformation, Ergodic Theory Dynam. Systems 25 (2005) 227-256. | MR | Zbl
, ,[17] Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 37 (1982). | MR | Zbl
, , ,[18] Topics in Ergodic Theory, Cambridge University Press, 1981. | MR | Zbl
,[19] Ergodic Theory, Cambridge University Press, 1989. | MR | Zbl
,[20] Binomial coefficient multiples of irrationals, Monatsh. Math. 125 (4) (1998) 269-278. | MR | Zbl
, ,[21] Symmetric Gibbs measures, Trans. Amer. Math. Soc. 349 (7) (1997) 2775-2811. | MR | Zbl
, ,[22] On the spectral theory of adic transformations, Adv. Soviet Math. 9 (1992) 217-230. | MR | Zbl
,[23] Uniform algebraic approximation of shift and multiplicative operators, Dokl. Akad. Nauk SSSR 218 (24) (1981) 526-529. | MR | Zbl
,Cité par Sources :