@article{AIHPB_2003__39_4_593_0, author = {Geiger, Jochen and Kersting, G\"otz and Vatutin, Vladimir A.}, title = {Limit theorems for subcritical branching processes in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {593--620}, publisher = {Elsevier}, volume = {39}, number = {4}, year = {2003}, doi = {10.1016/S0246-0203(02)00020-1}, zbl = {1038.60083}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0246-0203(02)00020-1/} }
TY - JOUR AU - Geiger, Jochen AU - Kersting, Götz AU - Vatutin, Vladimir A. TI - Limit theorems for subcritical branching processes in random environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 593 EP - 620 VL - 39 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0246-0203(02)00020-1/ DO - 10.1016/S0246-0203(02)00020-1 LA - en ID - AIHPB_2003__39_4_593_0 ER -
%0 Journal Article %A Geiger, Jochen %A Kersting, Götz %A Vatutin, Vladimir A. %T Limit theorems for subcritical branching processes in random environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 593-620 %V 39 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0246-0203(02)00020-1/ %R 10.1016/S0246-0203(02)00020-1 %G en %F AIHPB_2003__39_4_593_0
Geiger, Jochen; Kersting, Götz; Vatutin, Vladimir A. Limit theorems for subcritical branching processes in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 4, pp. 593-620. doi : 10.1016/S0246-0203(02)00020-1. http://www.numdam.org/articles/10.1016/S0246-0203(02)00020-1/
[1] V.I. Afanasyev, Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., Moscow, MSU, 1980.
[2] Limit theorems for a moderately subcritical branching process in a random environment, Discrete Math. Appl. 8 (1998) 35-52. | MR | Zbl
,[3] Bounds on the extinction time distribution of a branching process, Adv. Appl. Probab. 6 (1974) 322-335. | MR | Zbl
,[4] On branching processes with random environments: I, II, Ann. Math. Stat. 42 (1971) 1499-1520, 1843-1858. | Zbl
, ,[5] Branching Processes, Springer, New York, 1972. | MR | Zbl
, ,[6] On conditioning a random walk to stay positive, Ann. Probab. 22 (1994) 2152-2167. | MR | Zbl
, ,[7] On the survival probability of a branching process in a finite state i.i.d. environment, Stochastic Processes Appl. 27 (1988) 151-157. | MR | Zbl
,[8] On the asymptotic behaviour of first passage times for transient random walk, Probab. Theory Related Fields 81 (1989) 239-246. | MR | Zbl
,[9] On the survival probability of a branching process in a random environment, Adv. Appl. Probab. 29 (1997) 38-55. | MR | Zbl
, ,[10] An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York, 1971. | MR | Zbl
,[11] Reduced subcritical Galton-Watson processes in a random environment, Adv. Appl. Probab. 31 (1999) 88-111. | Zbl
, ,[12] Elementary new proofs of classical limit theorems for Galton-Watson processes, J. Appl. Probab. 36 (1999) 301-309. | Zbl
,[13] The survival probability of a critical branching process in random environment, Teor. Verojatnost. i Primenen. 45 (2000) 607-615. | MR | Zbl
, ,[14] Propriétés asymptotiques des processus de branchement en environnement aléatoire, C. R. Acad. Sci. Paris Sér. I Math. 332 (4) (2001) 339-344. | MR | Zbl
, ,[15] Determination of the limiting coefficient for exponential functionals of random walks with positive drift, J. Math. Sci. Univ. Tokyo 5 (1998) 299-332. | MR | Zbl
,[16] Foundations of Modern Probability, Springer, New York, 1997. | MR | Zbl
,[17] On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment, Theory Probab. Appl. 21 (1976) 791-804. | MR | Zbl
,[18] On the survival probability of a branching process in a random environment, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 1-10. | Numdam | MR | Zbl
,[19] On branching processes in random environments, Ann. Math. Stat. 40 (1969) 814-827. | MR | Zbl
, ,[20] The exponential rate of convergence of the distribution of the maximum of a random walk. Part II, J. Appl. Probab. 13 (1976) 733-740. | MR | Zbl
, ,Cité par Sources :